
Siren -
GammaProtocol
Smart Contract Security

Assessment

Prepared by: Halborn

Date of Engagement: December 11th, 2023 - January 26th, 2024

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 9

CONTACTS 9

1 EXECUTIVE OVERVIEW 10

1.1 INTRODUCTION 11

1.2 ASSESSMENT SUMMARY 11

1.3 SCOPE 13

1.4 TEST APPROACH & METHODOLOGY 14

2 RISK METHODOLOGY 16

2.1 EXPLOITABILITY 17

2.2 IMPACT 18

2.3 SEVERITY COEFFICIENT 20

3 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 22

4 FINDINGS & TECH DETAILS GAMMAPROTOCOL 24

4.1 (HAL-01) UNHANDLED ZERO PRICE IN MARGINCALCULATOR LEADING TO

INVALID CALCULATIONS - HIGH(7.5) 26

Description 26

BVSS 26

Recommendation 26

Remediation Plan 27

4.2 (HAL-02) UNINITIALIZED SPOTSHOCKVALUE LEADING TO DIVISION BY

ZERO - HIGH(7.5) 28

Description 28

BVSS 28

Recommendation 28

Remediation Plan 29

1

4.3 (HAL-03) UNINITIALIZED IMPLEMENTATION IN UPGRADEABLE CONTRACT -

MEDIUM(6.2) 30

Description 30

BVSS 30

Recommendation 30

Remediation Plan 31

4.4 (HAL-04) UNNECESSARY MEMORY STORE UPDATES IN RUNACTIONS FUNC-

TION - INFORMATIONAL(0.0) 32

Description 32

BVSS 32

Recommendation 32

Remediation Plan 33

4.5 (HAL-05) REDUNDANT PARAMETER IN ONLYAUTHORIZED MODIFIER - IN-

FORMATIONAL(0.0) 34

Description 34

BVSS 34

Recommendation 34

Remediation Plan 36

5 FINDINGS & TECH DETAILS CORE-v4 36

5.1 (HAL-01) UNDERFLOW IN RESET PENDING ORDER - CRITICAL(10) 38

Description 38

BVSS 38

Recommendation 38

Remediation Plan 39

5.2 (HAL-02) MISMATCHED RETURN VALUES - CRITICAL(10) 40

Description 40

Recommendation 40

2

Remediation Plan 40

5.3 (HAL-03) UNSET SWAP PATH - CRITICAL(10) 41

Description 41

BVSS 41

Recommendation 41

Remediation Plan 42

5.4 (HAL-04) INEFFECTIVE ERROR HANDLING IN EXECUTE ORDER FUNCTION -

CRITICAL(10) 43

Description 43

BVSS 43

Recommendation 43

Remediation Plan 44

5.5 (HAL-05) MISSING VALIDATION OF VAULT ID IN SUBMIT FUNCTION -

HIGH(8.8) 45

Description 45

BVSS 45

Recommendation 46

Remediation Plan 46

5.6 (HAL-06) MISMATCHED WITHDRAWAL AND DEPOSIT ROUND IDS - HIGH(7.5)

47

Description 47

BVSS 47

Recommendation 47

Remediation Plan 48

5.7 (HAL-07) UNVERIFIED ORACLE PRICE - HIGH(7.5) 49

Description 49

BVSS 49

3

Recommendation 50

Remediation Plan 50

5.8 (HAL-08) REDUNDANT CHECK ON PRICE PER SHARE - MEDIUM(5.0) 51

Description 51

POC 51

BVSS 53

Recommendation 53

Remediation Plan 54

5.9 (HAL-09) MISSING DISABLEINITIALIZERS CALL IN CONTRACT CONSTRUC-

TORS - MEDIUM(6.2) 55

Description 55

BVSS 55

Recommendation 56

Remediation Plan 56

5.10 (HAL-10) INCONSISTENT FEE CALCULATION - LOW(3.1) 57

Description 57

BVSS 57

Recommendation 57

Remediation Plan 58

5.11 (HAL-11) POTENTIAL MISALIGNMENT IN VAULT SELECTION - LOW(3.1)

59

Description 59

BVSS 59

Recommendation 59

Remediation Plan 60

5.12 (HAL-12) LACK OF VALIDATION FOR UNDERLYING ASSET - LOW(2.5) 61

Description 61

4

BVSS 61

Recommendation 61

Remediation Plan 61

5.13 (HAL-13) INCORRECT COLLATERALDIFF CALCULATION IN SYNC FUNCTION -

LOW(2.4) 62

Description 62

BVSS 62

Recommendation 62

Remediation Plan 63

5.14 (HAL-14) UNVERIFIED RETURN VALUES IN REFRESHCONFIGINTERNAL FUNC-

TION - INFORMATIONAL(1.9) 64

Description 64

BVSS 65

Recommendation 65

Remediation Plan 65

5.15 (HAL-15) INSUFFICIENT VALIDATION OF SHOCK PERCENTAGE - INFOR-

MATIONAL(1.5) 66

Description 66

BVSS 66

Recommendation 66

Remediation Plan 67

5.16 (HAL-16) MISSING VALIDATION OF PARAMETERS - INFORMATIONAL(1.5)

68

Description 68

BVSS 68

Recommendation 68

Remediation Plan 69

5

5.17 (HAL-17) SUBOPTIMAL HANDLING OF LONG POSITIONS - INFORMA-

TIONAL(1.0) 70

Description 70

BVSS 70

Recommendation 70

Remediation Plan 71

5.18 (HAL-18) UNUSED FUNCTION - INFORMATIONAL(0.5) 72

Description 72

BVSS 72

Recommendation 72

Remediation Plan 73

5.19 (HAL-19) UNUSED FUNCTION IN LPMANAGER CONTRACT - INFORMA-

TIONAL(0.5) 74

Description 74

BVSS 74

Recommendation 74

Remediation Plan 74

5.20 (HAL-20) OVERESTIMATION OF EXECUTION FEE - INFORMATIONAL(0.5)

75

Description 75

BVSS 75

Recommendation 75

Remediation Plan 76

5.21 (HAL-21) INEFFECTIVE AFTER ORDER FROZEN FUNCTION - INFORMA-

TIONAL(0.5) 77

Description 77

6

BVSS 77

Recommendation 77

Remediation Plan 77

5.22 (HAL-22) REDUNDANT ORACLE CALLS IN HEDGE FUNCTION - INFORMA-

TIONAL(0.5) 78

Description 78

BVSS 78

Recommendation 78

Remediation Plan 78

5.23 (HAL-23) GAS INEFFICIENCIES IN ERROR HANDLING - INFORMA-

TIONAL(0.5) 79

Description 79

BVSS 79

Recommendation 79

Remediation Plan 80

6 REVIEW NOTES 81

6.1 GammaProtocol 82

Controller.sol 82

MarginCalculator.sol 94

NakedMarginCalculator 99

6.2 Core 102

HedgedPool.sol 102

LpManager.sol 108

Gmx2Hedger.sol 109

TradeExecutor 114

Considerations and Risks 115

7

7 AUTOMATED TESTING 118

7.1 STATIC ANALYSIS REPORT 119

Description 119

Slither results 119

8

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE

0.1 Document Creation 01/29/2024

0.2 Draft Review 01/29/2024

1.0 Remediation Plan 02/16/2024

1.1 Remediation Plan Review 02/19/2024

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

9

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com

10

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Siren engaged Halborn to conduct a security assessment on their smart

contract beginning on December 11th, 2023 and ending on January 26th,

2024. The security assessment was scoped to the smart contracts provided

to the Halborn team.

1.2 ASSESSMENT SUMMARY

Halborn was provided about seven weeks for the engagement and assigned one

full-time security engineer to review the security of the smart contracts

in scope. The engineer is a blockchain and smart contract security expert

with advanced penetration testing and smart contract hacking skills, and

deep knowledge of multiple blockchain protocols.

The purpose of this assessment is to:

• Ensure that smart contract functions operate as intended

• Identify potential security issues with the smart contracts

In summary, Halborn identified several vulnerabilities of varying sever-

ity in the smart contract code, which were mostly addressed by the Siren

team.

During the detailed assessment of the GammaProtocol and core-v4 reposi-

tories, including key contracts such as TradeExecutor, Gmx2Hedger, and

others, a comprehensive analysis was conducted across various components

and functionalities. The examination focused on ensuring operational ef-

ficiency, security, and optimal gas usage. The findings are categorized

into several core areas:

Contract Initialization and Configuration

- Rigorous validation of parameters during contract initialization.

- Secure setting and updating of vital contract addresses and configura-

tions.

11

EX
EC

UT
IV

E
OV

ER
VI

EW

Error Handling and Gas Optimization

- Evaluation of the use of string-based versus custom errors for improved

gas efficiency.

- Assessment of error message handling in try-catch blocks for robust

error management.

Margin Vault and Order Management

- Procedures for the creation and validation of margin vaults.

- Detailed review of order submission, execution, and cancellation pro-

cesses.

Fee Calculation and Management

- Analysis of execution fee computation methods, focusing on dynamic

vs. static approaches.

- Investigation of fee handling during order submissions and completions

in varied transaction scenarios.

Position Management in Trading Operations

- Optimization strategies for managing long positions during oToken mint-

ing.

- Efficiency in burning long offsets compared to user transfers.

Role-Based Access Control and Security Measures

- Assessment of access control mechanisms and permissions for sensitive

functions.

- Security review of critical functionalities like order execution and

vault management.

Smart Contract Libraries and Interoperability

- Usage and reliability of libraries for managing orders, vaults, and

hedging data.

- Inspection of library functions to handle edge cases and maintain

contract integrity.

Upgrade Patterns and Contract Interactions

- Review of upgradeability patterns and their implications on contract

functionality.

- Analysis of interactions among various contracts within the reposito-

12

EX
EC

UT
IV

E
OV

ER
VI

EW

ries.

Order and Trade Execution Processes

- Mechanisms and validations involved in order creation and execution.

- Trade execution procedures and their effects on contract states and

user positions.

Summary of Findings

1. Error Handling: Identified potential for gas savings by transitioning

from string-based to custom errors.

2. Fee Calculations: Noted inconsistency in fee calculations between

order submission and completion.

3. Position Management: Observed opportunities for optimization in

handling long positions during oToken minting.

4. Vault Management: Suggested improvements in vault selection logic to

align with multiple vault scenarios.

Questions and Scenarios for Consideration

- Impact of processing orders with invalid or non-existent trader vault

IDs.

- Effectiveness of error handling strategies in different error scenar-

ios.

- Efficiency of long position management in minting processes.

- Appropriateness of fee calculation methods in dynamic transaction en-

vironments.

- Strategies for managing multiple vaults for the same underlying asset.

- Contract functionality and integrity under diverse edge cases and user

actions.

This comprehensive analysis aimed to ensure the contracts’ operational

efficiency, security, and optimal gas utilization while maintaining their

intended functionalities.

1.3 SCOPE

The assessment was scoped into the following smart contracts:

13

EX
EC

UT
IV

E
OV

ER
VI

EW

• contracts/core/Controller.sol

• contracts/core/MarginCalculator.sol

• contracts/core/calculators/NakedMarginCalculator.sol

• contracts/libs/Actions.sol

• contracts/libs/MarginVault.sol

Commit ID: 7d3b05ffdedf2abf2ab3906043011c04a0e724ec (order_flow_redo

branch)

Repository URL: https://github.com/sirenmarkets/GammaProtocol/tree/

order_flow_redo

• contracts/core/HedgedPool.sol

• contracts/core/LpManager.sol

• contracts/core/TradeExecutor.sol

• contracts/core/hedgers/Gmx2Hedger.sol

Commit ID: 1a77b36821bec584991efb35032ebe5529835df5 (order-flow-redo

branch)

Repository URL: https://github.com/sirenmarkets/core-v4/tree/

order-flow-redo

1.4 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this assessment. While manual testing is recommended to

uncover flaws in logic, process, and implementation; automated testing

techniques help enhance coverage of the code and can quickly identify

items that do not follow the security best practices. The following

phases and associated tools were used during the assessment:

• Research into architecture and purpose.

14

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/sirenmarkets/GammaProtocol/tree/order_flow_redo
https://github.com/sirenmarkets/GammaProtocol/tree/order_flow_redo
https://github.com/sirenmarkets/core-v4/tree/order-flow-redo
https://github.com/sirenmarkets/core-v4/tree/order-flow-redo

• Smart contract manual code review and walkthrough.

• Graphing out functionality and contract logic/connectivity/functions

(solgraph).

• Manual assessment of use and safety for the critical Solidity vari-

ables and functions in scope to identify any arithmetic related

vulnerability classes.

• Manual testing by custom scripts.

• Testnet deployment (Foundry).

15

EX
EC

UT
IV

E
OV

ER
VI

EW

2. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two

sets of Metrics and a Severity Coefficient. This system is inspired by

the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability

captures the ease and technical means by which vulnerabilities can be

exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of

the ranking with two factors: Reversibility and Scope. These capture the

impact of the vulnerability on the environment as well as the number of

users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and

10 corresponding to the highest security risk. This provides an objective

and accurate rating of the severity of security vulnerabilities in smart

contracts.

The system is designed to assist in identifying and prioritizing vul-

nerabilities based on their level of risk to address the most critical

issues in a timely manner.

16

EX
EC

UT
IV

E
OV

ER
VI

EW

2.1 EXPLOITABILITY

Attack Origin (AO):

Captures whether the attack requires compromising a specific account.

Attack Cost (AC):

Captures the cost of exploiting the vulnerability incurred by the attacker

relative to sending a single transaction on the relevant blockchain.

Includes but is not limited to financial and computational cost.

Attack Complexity (AX):

Describes the conditions beyond the attacker’s control that must exist in

order to exploit the vulnerability. Includes but is not limited to macro

situation, available third-party liquidity and regulatory challenges.

Metrics:

Exploitability Metric

(mE)
Metric Value Numerical Value

Attack Origin (AO)
Arbitrary (AO:A) 1

Specific (AO:S) 0.2

Attack Cost (AC)

Low (AC:L) 1

Medium (AC:M) 0.67

High (AC:H) 0.33

Attack Complexity (AX)

Low (AX:L) 1

Medium (AX:M) 0.67

High (AX:H) 0.33

Exploitability E is calculated using the following formula:

E “
ź

me

17

EX
EC

UT
IV

E
OV

ER
VI

EW

2.2 IMPACT

Confidentiality (C):

Measures the impact to the confidentiality of the information resources

managed by the contract due to a successfully exploited vulnerability.

Confidentiality refers to limiting access to authorized users only.

Integrity (I):

Measures the impact to integrity of a successfully exploited vulnerabil-

ity. Integrity refers to the trustworthiness and veracity of data stored

and/or processed on-chain. Integrity impact directly affecting Deposit

or Yield records is excluded.

Availability (A):

Measures the impact to the availability of the impacted component re-

sulting from a successfully exploited vulnerability. This metric refers

to smart contract features and functionality, not state. Availability

impact directly affecting Deposit or Yield is excluded.

Deposit (D):

Measures the impact to the deposits made to the contract by either users

or owners.

Yield (Y):

Measures the impact to the yield generated by the contract for either

users or owners.

18

EX
EC

UT
IV

E
OV

ER
VI

EW

Metrics:

Impact Metric

(mI)
Metric Value Numerical Value

Confidentiality (C)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Integrity (I)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Availability (A)

None (A:N) 0

Low (A:L) 0.25

Medium (A:M) 0.5

High (A:H) 0.75

Critical 1

Deposit (D)

None (D:N) 0

Low (D:L) 0.25

Medium (D:M) 0.5

High (D:H) 0.75

Critical (D:C) 1

Yield (Y)

None (Y:N) 0

Low (Y:L) 0.25

Medium: (Y:M) 0.5

High: (Y:H) 0.75

Critical (Y:H) 1

Impact I is calculated using the following formula:

I “ maxpmIq `

ř

mI ´ maxpmIq

4

19

EX
EC

UT
IV

E
OV

ER
VI

EW

2.3 SEVERITY COEFFICIENT

Reversibility (R):

Describes the share of the exploited vulnerability effects that can be

reversed. For upgradeable contracts, assume the contract private key is

available.

Scope (S):

Captures whether a vulnerability in one vulnerable contract impacts re-

sources in other contracts.

Coefficient

(C)
Coefficient Value Numerical Value

Reversibility (r)

None (R:N) 1

Partial (R:P) 0.5

Full (R:F) 0.25

Scope (s)
Changed (S:C) 1.25

Unchanged (S:U) 1

Severity Coefficient C is obtained by the following product:

C “ rs

20

EX
EC

UT
IV

E
OV

ER
VI

EW

The Vulnerability Severity Score S is obtained by:

S “ minp10, EIC ˚ 10q

The score is rounded up to 1 decimal places.

Severity Score Value Range

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

21

EX
EC

UT
IV

E
OV

ER
VI

EW

3. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

4 5 3 4 12

22

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) UNHANDLED ZERO PRICE IN
MARGINCALCULATOR LEADING TO INVALID

CALCULATIONS
High (7.5) RISK ACCEPTED

(HAL-02) UNINITIALIZED
SPOTSHOCKVALUE LEADING TO DIVISION

BY ZERO
High (7.5) RISK ACCEPTED

(HAL-03) UNINITIALIZED
IMPLEMENTATION IN UPGRADEABLE

CONTRACT
Medium (6.2) SOLVED - 02/15/2024

(HAL-04) UNNECESSARY MEMORY STORE
UPDATES IN RUNACTIONS FUNCTION

Informational
(0.0)

FUTURE RELEASE

(HAL-05) REDUNDANT PARAMETER IN
ONLYAUTHORIZED MODIFIER

Informational
(0.0)

FUTURE RELEASE

(HAL-01) UNDERFLOW IN RESET PENDING
ORDER

Critical (10) SOLVED - 02/15/2024

(HAL-02) MISMATCHED RETURN VALUES Critical (10) NOT APPLICABLE

(HAL-03) UNSET SWAP PATH Critical (10) NOT APPLICABLE

(HAL-04) INEFFECTIVE ERROR HANDLING
IN EXECUTE ORDER FUNCTION

Critical (10) SOLVED - 02/15/2024

(HAL-05) MISSING VALIDATION OF
VAULT ID IN SUBMIT FUNCTION

High (8.8) SOLVED - 02/15/2024

(HAL-06) MISMATCHED WITHDRAWAL AND
DEPOSIT ROUND IDS

High (7.5) NOT APPLICABLE

(HAL-07) UNVERIFIED ORACLE PRICE High (7.5) RISK ACCEPTED

(HAL-08) REDUNDANT CHECK ON PRICE
PER SHARE

Medium (5.0) SOLVED - 02/15/2024

(HAL-09) MISSING
DISABLEINITIALIZERS CALL IN

CONTRACT CONSTRUCTORS
Medium (6.2) SOLVED - 02/15/2024

(HAL-10) INCONSISTENT FEE
CALCULATION

Low (3.1) NOT APPLICABLE

23

EX
EC

UT
IV

E
OV

ER
VI

EW

(HAL-11) POTENTIAL MISALIGNMENT IN
VAULT SELECTION

Low (3.1) RISK ACCEPTED

(HAL-12) LACK OF VALIDATION FOR
UNDERLYING ASSET

Low (2.5) FUTURE RELEASE

(HAL-13) INCORRECT COLLATERALDIFF
CALCULATION IN SYNC FUNCTION

Low (2.4) SOLVED - 02/15/2024

(HAL-14) UNVERIFIED RETURN VALUES
IN REFRESHCONFIGINTERNAL FUNCTION

Informational
(1.9)

ACKNOWLEDGED

(HAL-15) INSUFFICIENT VALIDATION OF
SHOCK PERCENTAGE

Informational
(1.5)

ACKNOWLEDGED

(HAL-16) MISSING VALIDATION OF
PARAMETERS

Informational
(1.5)

FUTURE RELEASE

(HAL-17) SUBOPTIMAL HANDLING OF
LONG POSITIONS

Informational
(1.0)

NOT APPLICABLE

(HAL-18) UNUSED FUNCTION
Informational

(0.5)
SOLVED - 02/15/2024

(HAL-19) UNUSED FUNCTION IN
LPMANAGER CONTRACT

Informational
(0.5)

SOLVED - 02/15/2024

(HAL-20) OVERESTIMATION OF
EXECUTION FEE

Informational
(0.5)

ACKNOWLEDGED

(HAL-21) INEFFECTIVE AFTER ORDER
FROZEN FUNCTION

Informational
(0.5)

SOLVED - 02/15/2024

(HAL-22) REDUNDANT ORACLE CALLS IN
HEDGE FUNCTION

Informational
(0.5)

SOLVED - 02/15/2024

(HAL-23) GAS INEFFICIENCIES IN
ERROR HANDLING

Informational
(0.5)

FUTURE RELEASE

24

EX
EC

UT
IV

E
OV

ER
VI

EW

25

FINDINGS & TECH
DETAILS
GAMMAPROTOCOL

4.1 (HAL-01) UNHANDLED ZERO PRICE
IN MARGINCALCULATOR LEADING TO
INVALID CALCULATIONS - HIGH (7.5)

Description:

In the MarginCalculator contract, the functions _convertAmountOnLivePrice

and _convertAmountOnExpiryPrice exhibit a critical vulnerability due to

the lack of handling for zero price values returned by the oracle. These

functions are responsible for converting amounts between two assets based

on their respective prices. The conversion is achieved by multiplying

the amount of asset A by its price and dividing by the price of asset B.

The vulnerability arises when either priceA or priceB is zero. This

situation could occur if the oracle fails to return a valid price for

an asset. Notably, the _convertAmountOnExpiryPrice function attempts to

handle cases where the expiry price is not set by using the current price,

but it does not account for the possibility of the current price also

being zero. A zero price leads to division by zero in the calculation,

resulting in undefined behavior or transaction reversion. This can impact

the integrity of the contract, as it may lead to invalid underlying and

strike calculations, potentially causing a vault to be incorrectly deemed

valid.

BVSS:

AO:A/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:N/S:U (7.5)

Recommendation:

To mitigate this vulnerability, the following steps should be taken:

1. Zero Price Validation: Implement validation checks in both functions

to ensure that neither priceA nor priceB is zero after retrieving

values from the oracle. If a zero price is encountered, the function

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
GA

MM
AP

RO
TO

CO
L

should revert with a clear error message indicating the invalid

price.

2. Oracle Contract Review: Although it’s outside the scope of this au-

dit, it’s recommended to review the oracle contract to ensure it has

appropriate mechanisms to prevent zero prices. This could include

validation checks, reliable data sources, or fallback mechanisms in

case of data unavailability.

3. Fallback Mechanism: Consider implementing a fallback mechanism in

the MarginCalculator contract itself. For example, if a valid price

cannot be obtained, the contract could use a default or historical

price, or it could revert the transaction to prevent erroneous

calculations.

4. Comprehensive Testing: Extensive testing should be conducted to

ensure the contract behaves as expected in scenarios where the oracle

returns zero prices. This includes unit tests and integration tests

with the oracle contract.

5. Documentation and Communication: Update the contract documentation

to clearly state the dependency on the oracle’s price feed and

the risks associated with zero prices. Communicate to users and

stakeholders about these dependencies and potential risks.

Implementing these recommendations will enhance the robustness of the

MarginCalculator contract and safeguard against the risks posed by zero

price values.

Remediation Plan:

RISK ACCEPTED: Siren stated that “Code relies on oracle implementation to

not return zero prices. ChainlinkPricer which is where the price comes

from”. This contract was out of scope.

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
GA

MM
AP

RO
TO

CO
L

4.2 (HAL-02) UNINITIALIZED
SPOTSHOCKVALUE LEADING TO DIVISION
BY ZERO - HIGH (7.5)

Description:

In the NakedMarginCalculator contract, specifically within the

getNakedMarginRequired2 function, there exists a critical vulnerability

due to the potential uninitialized state of spotShockValue. The function

calculates various financial metrics based on the type of option (NMCI.

OptionType) provided as an input. A key component in these calculations

is spotShockValue, which is derived from spotShock[_productHash].

The vulnerability arises in scenarios where spotShockValue might not

be initialized for a given _productHash. Particularly in the case of

a NAKED_CALL option type, the code performs a division operation with

spotShockValue. If spotShockValue is uninitialized and defaults to zero,

this leads to a division by zero scenario. This could either cause

transaction reversion or undefined behavior, depending on the Ethereum

Virtual Machine’s (EVM) handling of such cases. The impact is primarily

on the integrity of the contract, as it can lead to incorrect financial

calculations or failed transactions.

BVSS:

AO:A/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:N/S:U (7.5)

Recommendation:

To mitigate this vulnerability, the contract should incorporate checks

to ensure spotShockValue is properly initialized before proceeding with

calculations. This can be achieved through the following steps:

1. Validation Check: Implement a check to validate that spotShock[

_productHash] returns a non-zero value before it’s used in calcu-

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
GA

MM
AP

RO
TO

CO
L

lations. If the value is zero, the function should revert with a

clear error message indicating the uninitialized state.

2. Initialization Routine: Establish a routine to initialize

spotShockValue for all relevant _productHash values. This could be

part of the contract deployment process or a separate initialization

function that must be called before the contract is used.

3. Documentation and Error Messages: Enhance documentation and er-

ror messages to guide users and developers about the necessity of

initializing spotShockValue. Clear documentation can prevent mis-

configuration and misuse of the contract.

4. Testing: Implement comprehensive unit and integration tests to sim-

ulate scenarios where spotShockValue might be uninitialized and

ensure the contract behaves as expected.

By implementing these recommendations, the NakedMarginCalculator contract

can be safeguarded against division by zero errors and ensure more robust

and reliable financial computations.

Remediation Plan:

RISK ACCEPTED: Siren stated that “Initializing a spotShock value if

part of the admin routine. Even if we add a non-zero check, there is

still a possibility of an incorrect value being set. It is the admins

responsibility to correctly configure all risk parameters”.

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
GA

MM
AP

RO
TO

CO
L

4.3 (HAL-03) UNINITIALIZED
IMPLEMENTATION IN UPGRADEABLE
CONTRACT - MEDIUM (6.2)

Description:

The Controller contract, which employs the Initializable contract, is

designed to support upgradeability and initialization functions. In

an upgradeable contract architecture, it’s vital that the implementation

contracts (like Controller) are never initialized on their own, to prevent

direct interaction which could lead to security vulnerabilities. However,

in the given scenario, the Controller contract’s implementation does

not mark itself as initialized during its deployment. This oversight

means that the implementation contract could potentially be initialized

independently. Such a situation opens up risks including phishing attacks

or, in cases of other vulnerabilities, even contract destruction. The

root cause of this issue is the absence of the _disableInitializers

function in the used version of the Initializable contract, which would

have automatically set the initialized flag to true, preventing further

initializations.

BVSS:

AO:A/AC:L/AX:L/C:N/I:M/A:M/D:N/Y:N/R:N/S:U (6.2)

Recommendation:

To mitigate this vulnerability, it is crucial to ensure that the im-

plementation contract (Controller) cannot be initialized after deploy-

ment. Since the latest version of Initializable that includes the

_disableInitializers function is not used, a manual approach is needed.

This involves explicitly setting the initialized flag to true in the im-

plementation contract’s constructor or initialization function. By doing

this, any attempt to re-initialize the implementation contract will be

rejected, closing the vulnerability. Additionally, it’s recommended to

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
GA

MM
AP

RO
TO

CO
L

upgrade to a newer version of the Initializable contract if possible, to

benefit from improved security features and best practices. This pre-

ventive measure secures the contract against unintended initializations,

thereby safeguarding against potential phishing or destructive actions.

Remediation Plan:

SOLVED: The issue was solved in commit 566f8b8

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
GA

MM
AP

RO
TO

CO
L

https://github.com/sirenmarkets/core-v4/commit/566f8b85c1d2ce00c103999dc3e23104c223ff39

4.4 (HAL-04) UNNECESSARY MEMORY
STORE UPDATES IN RUNACTIONS
FUNCTION - INFORMATIONAL (0.0)

Description:

The runActions internal function in the smart contract contains a segment

of code that updates the vaultUpdated, vaultId, and vaultOwner variables

in each iteration of its loop. This code segment is designed to handle

various actions on a vault. However, there’s a redundancy in the way

these variables are updated. The vaultId and vaultOwner values are

being reassigned in every loop iteration, even when they haven’t changed

from the previous iteration. Since these values are expected to remain

constant for all actions in a single operate call, repeatedly writing

the same values into memory is unnecessary and leads to inefficiency in

terms of gas usage.

In Solidity, and most programming languages, writing to memory/storage

is more expensive in terms of computational resources (gas, in the case

of Ethereum) than reading from it. Therefore, optimizing memory writes

can lead to more efficient code execution, especially important in a

blockchain context where every operation costs gas.

BVSS:

AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

To optimize the runActions function, consider updating the vaultId and

vaultOwner variables only once per function call or when they truly need

to change. This can be achieved by checking if vaultUpdated is already

true before updating these variables. If vaultUpdated is true, it implies

that these variables have already been set for the current operation, and

subsequent updates in the same function call are unnecessary.

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
GA

MM
AP

RO
TO

CO
L

Remediation Plan:

PENDING: Siren stated that “This has minimal gas impact. Will be fixed

in future versions”.

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
GA

MM
AP

RO
TO

CO
L

4.5 (HAL-05) REDUNDANT PARAMETER IN
ONLYAUTHORIZED MODIFIER -
INFORMATIONAL (0.0)

Description:

The onlyAuthorized modifier in the provided smart contract is designed to

restrict access to certain functions, ensuring they can be executed only

by authorized users. Currently, the modifier is defined to accept two

parameters: _sender (representing the address attempting to execute the

function) and _accountOwner (representing the account owner’s address).

However, within the context of the smart contract, _sender is consistently

passed as msg.sender. This pattern introduces a redundancy since msg.

sender is globally accessible within the contract and does not need to

be passed as a parameter.

The redundancy of the _sender parameter can lead to unnecessary complexity

and potential misunderstandings about how the modifier should be used.

Simplifying the modifier by removing the _sender parameter and directly

using msg.sender in the _isAuthorized function call would make the code

cleaner, less prone to errors, and more gas-efficient.

BVSS:

AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

To enhance code clarity and efficiency, it is recommended to refactor the

onlyAuthorized modifier and the _isAuthorized function as follows:

1. Modify onlyAuthorized Modifier:

Remove the _sender parameter from the onlyAuthorized modifier.

Update the modifier to use msg.sender directly when calling

_isAuthorized.

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
GA

MM
AP

RO
TO

CO
L

Listing 1

1 modifier onlyAuthorized(address _accountOwner) {

2 _isAuthorized(msg.sender , _accountOwner);

3 _;

4 }

5

2. Refactor _isAuthorized Function:

The _isAuthorized function should remain unchanged, as it correctly

takes two addresses to perform its check. The modification in the

onlyAuthorized modifier ensures that msg.sender is always used as

the first parameter.

3. Update Function Calls:

Update all instances where the onlyAuthorized modifier is used in

the contract. Remove the msg.sender argument from these calls, as

it is now implicitly used within the modifier.

Before:

Listing 2

1 function someFunction (...) external onlyAuthorized(msg.

ë sender , someAccountOwner) {

2 // Function logic here

3 }

4

After:

Listing 3

1 function someFunction (...) external onlyAuthorized(

ë someAccountOwner) {

2 // Function logic here

3 }

4

These changes will make the contract’s code more concise and reduce

the chance of errors related to the misuse of the _sender parameter.

Additionally, it could slightly reduce the gas cost associated with these

function calls due to the decreased computational overhead.

35

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
GA

MM
AP

RO
TO

CO
L

Remediation Plan:

PENDING: Siren stated that “This has minimal gas impact. Will be fixed

in future versions”.

36

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
GA

MM
AP

RO
TO

CO
L

37

FINDINGS & TECH
DETAILS CORE-V4

5.1 (HAL-01) UNDERFLOW IN RESET
PENDING ORDER - CRITICAL(10)

Description:

In the Gmx2Hedger contract, the resetPendingOrder function directly sets

pendingOrdersCount to 0. This action can create a discrepancy be-

tween the actual number of pending orders and the pendingOrdersCount

state variable. Subsequent order execution or cancellation, which

decrement pendingOrdersCount, can lead to an underflow error, as the

EVM’s safety checks will catch pendingOrdersCount = pendingOrdersCount

- 1; when pendingOrdersCount is already 0, but there are still pending

orders.

This misalignment can result in:

1. Failure of Order Processing: Any unprocessed orders will fail to

execute or cancel properly due to the underflow error, disrupting

normal contract operations.

2. Operational Risk: The function might be misused or misunderstood

as a way to pause operations or cancel transactions, leading to

operational inconsistencies.

3. Contract Robustness: The direct manipulation of pendingOrdersCount

without proper checks and balances undermines the contract’s ro-

bustness and reliability.

BVSS:

AO:A/AC:L/AX:L/C:N/I:H/A:C/D:N/Y:N/R:N/S:C (10)

Recommendation:

To address this issue:

38

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

1. Revise Function Logic: Consider revising the logic of

resetPendingOrder. Instead of directly setting pendingOrdersCount

to 0, ensure that it reflects the actual number of pending orders.

One approach could be to decrement pendingOrdersCount only after

successfully processing each pending order.

2. Implement Safety Checks: Include safety checks to prevent underflow

and ensure that the state variable accurately represents the real

count of pending orders.

3. Reevaluate Function Necessity: Assess if resetPendingOrder is nec-

essary and used appropriately. If it’s meant to serve as a pause

or cancel functionality, implement it more explicitly with proper

tracking and revert conditions.

4. Document Usage and Limitations: Clearly document the purpose and

limitations of resetPendingOrder to avoid misuse or misinterpreta-

tion.

By implementing these recommendations, the contract can maintain accu-

rate tracking of pending orders and enhance its overall reliability and

integrity.

Remediation Plan:

SOLVED: The client did address the issue in commit 8b83e69.

39

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

https://github.com/sirenmarkets/core-v4/commit/8b83e696dc806ce98ae1d3f75a2efbdb2f029d49

5.2 (HAL-02) MISMATCHED RETURN
VALUES - CRITICAL(10)

Description:

In the Gmx2Hedger contract, the _calculateAdjustedExecutionPrice

function incorrectly expects four return values from the IGmxUtils

.getExecutionPrice call, while the actual GMX function returns a

ExecutionPriceResult struct with only three values. This mismatch

results in the contract trying to access an undefined fourth return

value, leading to a revert.

Recommendation:

Modify _calculateAdjustedExecutionPrice to correctly handle the

ExecutionPriceResult struct returned by IGmxUtils.getExecutionPrice,

ensuring that it properly extracts the executionPrice from the struct.

This correction will align the function with the GMX interface and

prevent unintended reverts.

Remediation Plan:

NOT APPLICABLE: The original contracts were used for the in-

tegrity check https://github.com/gmx-io/gmx-synthetics/blob/

main/contracts/reader/ReaderPricingUtils.sol#L144. However,

Siren is using a custom implementation that was out of scope

and provided afterward which do return 4 values: https:

//arbiscan.io/address/0xb80E321fA8eCF53E354E72A254438eC6caB837eF#code

40

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

https://github.com/gmx-io/gmx-synthetics/blob/main/contracts/reader/ReaderPricingUtils.sol#L144
https://github.com/gmx-io/gmx-synthetics/blob/main/contracts/reader/ReaderPricingUtils.sol#L144
https://arbiscan.io/address/0xb80E321fA8eCF53E354E72A254438eC6caB837eF#code
https://arbiscan.io/address/0xb80E321fA8eCF53E354E72A254438eC6caB837eF#code

5.3 (HAL-03) UNSET SWAP PATH -
CRITICAL(10)

Description:

In the Gmx2Hedger contract, the functions _createOrderParamAddresses and

_orderParamAddresses define a swapPath variable but do not assign any

value to it. This oversight can cause issues when these functions are used

to create orders, especially if the GMX integration expects a properly

set swapPath for order execution.

Not setting swapPath could lead to:

1. Failed Order Execution: Orders might fail or not execute as expected

if the GMX system requires a valid swapPath for processing orders.

2. Integration Inconsistencies: Incomplete or incorrect implementation

of the GMX protocol specifications can lead to inconsistencies and

unexpected behavior in the contract’s interaction with GMX.

3. Testing and Reliability Concerns: The lack of appropriate test-

ing for external contract integrations, especially for critical

functionalities like order creation, can undermine the contract’s

reliability and robustness.

BVSS:

AO:A/AC:L/AX:L/C:N/I:H/A:C/D:N/Y:N/R:N/S:C (10)

Recommendation:

To resolve this issue:

1. Define swapPath Appropriately: Modify _createOrderParamAddresses

and _orderParamAddresses to correctly initialize and set swapPath

as required by the GMX protocol or the contract’s design.

41

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

2. Comprehensive Testing: Implement thorough testing to validate the

functionality of order creation and execution, particularly focusing

on integration with the GMX system. Ensure that all aspects of the

order, including swapPath, function as intended.

By addressing these recommendations, the Gmx2Hedger contract can ensure

proper integration with the GMX system, enhance its operational effective-

ness, and maintain the reliability and integrity of its functionalities.

Remediation Plan:

NOT APPLICABLE: Siren stated that “We use USDC as collateral, so no

conversion is required and empty needed to be used as a parameter”.

42

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

5.4 (HAL-04) INEFFECTIVE ERROR
HANDLING IN EXECUTE ORDER
FUNCTION - CRITICAL(10)

Description:

In the TradeExecutor contract, the executeOrder function’s try-catch

block is designed to handle errors from the executeActions call. How-

ever, it only catches errors with string messages (catch Error(string

memory reason)), not custom errors. This design oversight becomes

problematic when executeActions uses custom errors, like CustomErrors

.NotEnoughLiquidity. The EVM fails to decode the custom error’s bytes4

signature into a string, causing the catch block to fail and not execute

the intended completeOrderAndIssueRefund.

BVSS:

AO:A/AC:L/AX:L/C:N/I:C/A:N/D:N/Y:N/R:N/S:U (10)

Recommendation:

To address this issue and improve error handling:

1. Expand Catch Block: Include an additional catch block to handle

custom errors as bytes memory. This ensures that both string-based

errors and custom errors are effectively caught and handled.

Listing 4

1 try this.executeActions(vars , poolAddress) {

2 // Success logic ...

3 } catch Error(string memory reason) {

4 // Handle string error ...

5 } catch (bytes memory _err) {

6 // Handle custom error ...

7 }

8

43

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

2. Consistency in Error Usage: Standardize the use of error handling

throughout the contract. Decide on a consistent approach between

custom errors and string-based errors. This consistency will sim-

plify error handling and make the contract more maintainable.

3. Thorough Testing: Test the contract extensively to ensure that both

types of errors are correctly caught and handled, especially in

critical functions like executeOrder.

By implementing these recommendations, the contract can robustly han-

dle errors in executeOrder, ensuring that it responds appropriately to

all error types and maintains its intended functionality even in error

scenarios.

Remediation Plan:

SOLVED: The issue was solved in commit 961e4b3

44

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

https://github.com/sirenmarkets/core-v4/commit/961e4b3967531231835b419f08a61db0db69b630

5.5 (HAL-05) MISSING VALIDATION OF
VAULT ID IN SUBMIT FUNCTION - HIGH
(8.8)

Description:

In the TradeExecutor contract, the submitOrder function lacks a critical

validation check for the traderVaultId. This parameter is crucial for

identifying the specific vault associated with a trader’s order. Without

validating traderVaultId against the vault counter from the controller

(controller.getAccountVaultCounter(_owner)), there’s a risk of accepting

orders linked to invalid or non-existent vault IDs.

Potential consequences of this oversight include:

1. Non-Executable Orders: Orders associated with invalid traderVaultId

s might be recorded in the system but would be unexecutable. This

could clutter the system with unusable orders, impacting its effi-

ciency and usability.

2. Operational Disruption: The inability to execute orders due to

invalid vault IDs could disrupt trading operations, leading to trader

dissatisfaction and potential loss of trust in the platform.

3. Dependency on Controller’s Security: Relying solely on the con-

troller for vault ID verification later in the process puts undue

pressure on the controller’s security mechanisms. It’s more effec-

tive and safer to catch such issues early in the submitOrder function

itself.

BVSS:

AO:A/AC:L/AX:L/C:N/I:M/A:H/D:N/Y:N/R:N/S:U (8.8)

45

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

Recommendation:

To mitigate these risks:

• Implement an early validation check in submitOrder to ensure that

the provided traderVaultId is valid. This should involve comparing

it against controller.getAccountVaultCounter(_owner) to confirm its

existence and correct association with the owner.

• By adding this validation step, the system can promptly reject

orders with invalid vault IDs, preventing the accumulation of non-

executable orders and maintaining operational efficiency and reli-

ability.

Remediation Plan:

SOLVED: The issue was solved in commit b9ffe4e

46

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

https://github.com/sirenmarkets/core-v4/commit/b9ffe4ebe09564517f161a37463115941f811155

5.6 (HAL-06) MISMATCHED WITHDRAWAL
AND DEPOSIT ROUND IDS - HIGH (7.5)

Description:

The getCashLocked function in the LpManager contract calculates the total

amount of cash locked in a pool by summing values from the current

withdrawal and deposit rounds. However, the function does not verify

that the withdrawal round ID and deposit round ID correspond to the same

round. This oversight could lead to an inaccurate calculation of locked

cash, as it might combine values from different rounds.

Combining values from mismatched rounds can result in:

1. Inaccurate Liquidity Calculations: If the withdrawal and deposit

rounds are not synchronized, the liquidity calculation may either

overstate or understate the actual locked cash, affecting opera-

tional decisions and risk assessments.

2. Potential Financial Implications: Miscalculating locked cash can

impact the pool’s financial health, affecting decisions related to

withdrawals, deposits, and collateral requirements.

BVSS:

AO:A/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:N/S:U (7.5)

Recommendation:

To ensure accurate calculations, the getCashLocked function should be

updated to include a validation check confirming that the withdrawal

round ID and deposit round ID are for the same round. If a mismatch is

detected, the function should either revert or handle the discrepancy

appropriately to prevent incorrect calculations. This validation will

enhance the accuracy and reliability of the liquidity management in the

LpManager contract.

47

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

Remediation Plan:

NOT APPLICABLE: Siren stated that “By design. The duration of a deposit

round can be different from the duration of a withdrawal round, so we do

not have to track round ids”

48

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

5.7 (HAL-07) UNVERIFIED ORACLE
PRICE - HIGH (7.5)

Description:

The getCashBuffer function in the HedgedPool contract calculates the cash

buffer required for the pool based on the notional exposures and the un-

derlying asset prices obtained from an oracle. However, this function

does not verify if the oracle price is non-zero before using it in calcu-

lations. Relying on potentially zero oracle prices can lead to incorrect

calculation of the cash buffer, which is critical for maintaining adequate

collateralization in the pool.

A zero price from the oracle can result in:

1. Underestimation of Cash Buffer: If the oracle returns a zero price,

the calculated cash buffer for the respective exposures (calls or

puts) might be inaccurately low or zero. This can cause the contract

to underestimate the amount of collateral required, leading to under-

collateralization.

2. Operational and Financial Risk: Inaccurate cash buffer calculation

poses significant operational and financial risks. It can affect the

contract’s ability to meet its financial obligations, potentially

leading to solvency issues.

3. Contract Integrity: Reliable and accurate collateral management is

crucial for the contract’s integrity and trustworthiness. Inaccu-

racies in collateral calculation can undermine user confidence and

the contract’s overall reliability.

BVSS:

AO:A/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:N/S:U (7.5)

49

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

Recommendation:

To mitigate these risks, consider the following actions:

1. Implement Price Validation Checks: Modify the getCashBuffer func-

tion to include validation checks for non-zero oracle prices. If

a zero price is returned, the function should handle this case ap-

propriately, potentially by reverting the transaction with a clear

error message.

2. Fallback Mechanism for Oracle Prices: Implement a fallback mechanism

for cases where the oracle fails to provide a valid price. This

could involve using a historical price or an average of recent prices

as a temporary measure until the oracle issue is resolved.

3. Enhanced Oracle Reliability: Review the oracle implementation to

ensure its reliability and accuracy in providing asset prices. Con-

sider using multiple oracles or a decentralized oracle network to

reduce the risk of incorrect price feeds.

By addressing these recommendations, the HedgedPool contract can enhance

its collateral management accuracy and reliability, safeguarding against

the risks posed by potential oracle inaccuracies.

Remediation Plan:

RISK ACCEPTED: Siren stated that “Code relies on oracle implementation to

not return zero prices. ChainlinkPricer which is where the price comes

from”. This contract was out of scope.

50

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

5.8 (HAL-08) REDUNDANT CHECK ON
PRICE PER SHARE - MEDIUM (5.0)

Description:

In the LpManager contract, the function getDepositStatus includes a con-

ditional check for pricePerShare > 0 when calculating sharesRedeemable

for a user’s deposit. This check is redundant, considering the con-

tract’s design should not allow a round to advance without a non-zero

pricePerShare. However, this additional validation introduces a risk:

• If any part of the contract fails to validate pricePerShare ade-

quately (allowing a round to advance with a zero pricePerShare), de-

posits from that round may not be correctly processed in redeemShares

.

• Specifically, if pricePerShare is zero, cashPending would be 0,

leading to a reset of the deposit’s roundId and amount in redeemShares

. This reset could erase the record of previous deposits, resulting

in a potential loss of funds for the users.

This situation could occur if a user’s last deposit round ID does not

match the current depositRoundId, and the pricePerShare for that previous

round was improperly set to zero.

POC:

Listing 5

1 function test_invalid_redeem_deposit () public {

2

3 stdstore.target(address(lpManager))

4 .sig(" depositRoundId(address)")

5 .with_key(address(hedgedPool))

6 .checked_write (1);

7

8

9 stdstore.target(address(lpManager))

51

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

10 .sig(" deposits(address ,address)")

11 .with_key(address(hedgedPool))

12 .with_key(address(ADMIN))

13 .depth (1) // amount (roundId is 0)

14 .checked_write (100);

15

16 stdstore.target(address(lpManager))

17 .sig(" deposits(address ,address)")

18 .with_key(address(hedgedPool))

19 .with_key(address(ADMIN))

20 .depth (2) // unredeemedShares (roundId is 0)

21 .checked_write (100);

22

23 // To make things easier , we will be calling lpmanager

ë directly as

24 // if the pool did call it.

25 vm.prank(address(hedgedPool));

26 lpManager.redeemShares(address(ADMIN));

27

28 // This will set the previous round pricePerShare to 2e8

29 //

30 stdstore.target(address(lpManager))

31 .sig(" depositRounds(address ,uint256)")

32 .with_key(address(hedgedPool))

33 .with_key(uint256 (0))

34 .depth (1) // pricePerShare

35 .checked_write (2e8);

36

37 (uint256 cashPending , uint256 sharesRedeemable) =

ë lpManager.getDepositStatus(address(hedgedPool), ADMIN);

38

39 console.log ("====== INVALID REDEEM DEPOSIT ======");

40 console.log(" cashPending", cashPending);

41 console.log(" sharesRedeemable", sharesRedeemable);

42 }

POC output:

Listing 6

1 ====== INVALID REDEEM DEPOSIT ======

2 redeemed 100 // This should revert , as no pricePerShare was set

ë for that round

52

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

3 cashPending 0

4 sharesRedeemable 0

Expected output if price for that round is not zero (2e8):

Listing 7

1 ====== INVALID REDEEM DEPOSIT ======

2 redeemed 150

3 cashPending 0

4 sharesRedeemable 0

BVSS:

AO:A/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U (5.0)

Recommendation:

To address this issue, the following steps should be considered:

1. Remove Redundant Check: Consider removing the pricePerShare > 0

check in getDepositStatus if it’s guaranteed by the contract’s

design that pricePerShare cannot be zero when a new round starts.

2. Consistent Validation Across the Contract: Ensure that all sections

of the contract that handle pricePerShare do so consistently and

prevent rounds from advancing with a zero pricePerShare.

3. Error Handling and Fallback: Implement appropriate error handling

for cases where pricePerShare might be zero. This can prevent the

unintended reset of deposit records.

By implementing these recommendations, the risk of deposit loss in the

LpManager contract due to the redundant pricePerShare check can be sig-

nificantly mitigated, thereby enhancing the contract’s overall security

and reliability.

53

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

Remediation Plan:

SOLVED: The issue was solved in commit d2659c7

54

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

https://github.com/sirenmarkets/core-v4/commit/d2659c78935a51d9af60bb6c29d9d56ec3dece3b

5.9 (HAL-09) MISSING
DISABLEINITIALIZERS CALL IN
CONTRACT CONSTRUCTORS - MEDIUM (6.2)

Description:

The absence of _disableInitializers in the constructors of the LpManager,

HedgedPool, Gmx2Hedger, Gmx1Hedger, TradeExecutor, and Perennial1Hedger

contracts presents significant security risks. This function is cru-

cial in Solidity contracts, especially those following the upgradeable

pattern, to prevent the initialization of the implementation contract

directly.

Without calling _disableInitializers, the implementation contracts remain

vulnerable to malicious initialization. This can include setting adverse

states or manipulating contract logic. The risks associated with this

vulnerability are multifold:

1. Phishing Attacks: Attackers could trick contract administrators or

users into interacting with the implementation contract directly

instead of the proxy. This could lead to transactions that have

unintended consequences, such as transferring funds or altering

critical contract states.

2. Self-Destruction Risks: If any of the contracts contain a

selfdestruct function or similar, and it’s callable after

initialization, the contract could be destroyed by an attacker.

This would result in the loss of code and state, potentially

affecting all dependent systems or contracts.

BVSS:

AO:A/AC:L/AX:L/C:N/I:M/A:M/D:N/Y:N/R:N/S:U (6.2)

55

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

Recommendation:

To mitigate these risks, it’s imperative to include _disableInitializers

in the constructors of all mentioned contracts. This will prevent direct

initialization of the implementation contracts, safeguarding them against

the aforementioned risks.

Remediation Plan:

SOLVED: The issue was solved in commit cf7a6d4

56

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

https://github.com/sirenmarkets/core-v4/commit/cf7a6d4a0b16265b745c5e785605377d0327a477

5.10 (HAL-10) INCONSISTENT FEE
CALCULATION - LOW (3.1)

Description:

In the TradeExecutor contract, there’s an inconsistency in how

execution fees are calculated and handled between the submitOrder

and completeOrderAndIssueRefund functions. submitOrder uses a

static value minExecutionFee to determine the required fees, while

completeOrderAndIssueRefund calculates the transaction cost dynamically

based on the number of order.legs and other factors. This discrepancy

can lead to scenarios where the actual transaction costs exceed the

statically set minExecutionFee, potentially causing the system to incur

excess costs, especially for orders with a large number of legs.

BVSS:

AO:A/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:L/R:N/S:U (3.1)

Recommendation:

To address this inconsistency and potential financial risk:

• Revise the fee calculation in submitOrder to dynamically estimate

the execution fee based on factors such as the number of order legs

and other relevant parameters. This approach should align with the

dynamic calculation used in completeOrderAndIssueRefund.

• Ensure that the dynamically calculated fee in submitOrder includes

a buffer to account for gas price fluctuations and other variables,

safeguarding against underestimation.

• Regularly review and adjust the fee calculation logic as necessary to

reflect changes in network conditions and contract usage patterns.

By implementing dynamic and more accurate fee calculations in submitOrder

57

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

, the contract can better manage its financial risks and ensure that

execution fees cover the actual costs incurred during order processing.

Remediation Plan:

NOT APPLICABLE: Siren stated that “This works how it was designed. in

submitOrder user sends some predefined amount which is much larger than

the potential tx fee. And executeOrder calculates how much tx actually

costs and returns the difference.”

58

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

5.11 (HAL-11) POTENTIAL
MISALIGNMENT IN VAULT SELECTION -
LOW (3.1)

Description:

In the TradeExecutor contract, the executeOrder function currently se-

lects the margin vault for a pool using the first vault ID (index 0)

associated with an underlying asset (marginVaults[poolAddress][vars.order

.underlying][0]). However, since openMarginVault allows for the creation

of multiple vaults for the same _underlyingAsset, this approach might not

always reference the most relevant or recent vault, potentially leading

to operational inconsistencies or inefficiencies.

BVSS:

AO:A/AC:L/AX:L/C:N/I:L/A:L/D:N/Y:N/R:N/S:U (3.1)

Recommendation:

To better align the vault selection with the potential multiple vaults

scenario:

1. Use the Most Recent Vault: Modify executeOrder to select the latest

vault created for a given underlying asset. This can be achieved

by accessing the last element in the marginVaults[poolAddress][vars

.order.underlying] array, which represents the most recently opened

vault.

2. Review Vault Management Logic: Assess the overall logic for managing

multiple vaults per underlying asset. Ensure that the contract’s

design and functions are consistent with the intended use and man-

agement of these vaults.

3. Update Documentation: Reflect these changes and the rationale behind

59

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

them in the contract’s documentation, so that maintainers and users

understand the vault selection process.

4. Test for Edge Cases: Thoroughly test the updated functionality to

ensure it handles scenarios involving multiple vaults per underlying

asset correctly.

By selecting the most recent vault for order execution, the TradeExecutor

contract can better accommodate the dynamics of multiple vault scenarios,

enhancing its operational effectiveness and reliability.

Remediation Plan:

RISK ACCEPTED: Siren stated that “Right now it is by design that there

is only one for the pool”

60

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

5.12 (HAL-12) LACK OF VALIDATION
FOR UNDERLYING ASSET - LOW (2.5)

Description:

In the TradeExecutor contract, the openMarginVault function does

not validate the _underlyingAsset parameter. It neither checks

if _underlyingAsset is a valid/whitelisted address nor if it is a

non-zero value. This oversight could lead to operational issues

or vulnerabilities. Although the check is latter performed on

validateExecuteOrderArguments it would be a good idea to do it on early

stages.

BVSS:

AO:A/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:N/S:U (2.5)

Recommendation:

Implement validation checks in openMarginVault to ensure _underlyingAsset

is neither zero nor an invalid address. This may involve checking against

a list of allowed underlying assets or ensuring that _underlyingAsset is a

non-zero address. This validation will enhance the function’s robustness

and prevent potential misuse or errors.

Remediation Plan:

PENDING: Siren stated that “This is low priority and will be fixed in

future versions”

61

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

5.13 (HAL-13) INCORRECT
COLLATERALDIFF CALCULATION IN SYNC
FUNCTION - LOW (2.4)

Description:

In the Gmx2Hedger contract, the _sync function calculates collateralDiff

, the difference in collateral required after hedging operations. This

function calls _depositCollateral and _withdrawCollateral, adjusting the

total collateralDiff based on the amounts processed. However, there’s a

discrepancy in how _depositCollateral handles the deposit amount.

The _depositCollateral function caps the deposit amount to the pool’s

balance if the requested amount exceeds the available balance. But the

collateralDiff in _sync still uses the original, uncapped amount for

its calculations, leading to an inaccurate representation of the actual

collateral difference.

This discrepancy can result in:

1. Inaccurate Collateral Tracking: The contract might track more or

less collateral than what is actually deposited or withdrawn, leading

to potential financial discrepancies.

2. Operational Risk: Misrepresenting the actual collateral could impact

the contract’s operational decisions, such as future hedging actions

or collateral requirements.

BVSS:

AO:S/AC:L/AX:L/C:N/I:C/A:H/D:N/Y:N/R:N/S:U (2.4)

Recommendation:

To resolve this issue, _depositCollateral should be modified to return

the actual deposited amount. The _sync function should then use this

62

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

returned value to update collateralDiff accurately. This change ensures

that collateralDiff reflects the true state of the contract’s collateral

balance after each hedging operation, maintaining financial accuracy and

integrity.

Remediation Plan:

SOLVED: The issue was solved in commit 443f180.

63

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

5.14 (HAL-14) UNVERIFIED RETURN
VALUES IN REFRESHCONFIGINTERNAL
FUNCTION - INFORMATIONAL (1.9)

Description:

In the HedgedPool contract, the function _refreshConfigInternal is re-

sponsible for updating and initializing key addresses used by the con-

tract, such as the controller, calculator, oracle, and others. This func-

tion retrieves these addresses from the addressBook contract. However,

the function does not currently verify whether the returned addresses are

non-zero. Using zero addresses in these key functionalities could lead

to unexpected behaviors and vulnerabilities in the contract.

The absence of validation checks for zero addresses can lead to several

critical issues:

1. Function Calls to Zero Addresses: If any of these addresses are zero,

function calls to these addresses will fail, potentially leading to

transaction reversion or unexpected contract behavior.

2. Security Risks: Assigning a zero address to key functionalities

like the controller or oracle can expose the contract to various

security vulnerabilities. It might allow attackers to manipulate

contract state or execute functions that shouldn’t be accessible.

3. Operational Failure: Essential operations relying on these addresses

would fail, rendering the contract non-functional. This could affect

critical processes like margin calculations, trade executions, or

fee collections.

4. Loss of Funds: In the worst-case scenario, such as if the margin

pool address is zero, any funds sent to this address would be

irretrievably lost.

64

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

BVSS:

AO:S/AC:L/AX:L/C:N/I:H/A:H/D:N/Y:N/R:N/S:U (1.9)

Recommendation:

To mitigate these risks, the following steps should be recommended:

1. Validation Checks: Implement validation checks in the

_refreshConfigInternal function to ensure that all addresses

retrieved from the addressBook are non-zero. If a zero address is

detected, the function should revert the transaction with a clear

error message.

2. Robust Address Management: Enhance the addressBook contract, if

possible, to include safeguards that prevent the registration of

zero addresses for key functionalities.

By implementing these recommendations, the HedgedPool contract can sig-

nificantly enhance its operational reliability and security, protecting

itself from risks associated with zero addresses.

Remediation Plan:

ACKNOWLEDGED: Siren stated that “This is done in deployment scripts”.

65

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

5.15 (HAL-15) INSUFFICIENT
VALIDATION OF SHOCK PERCENTAGE -
INFORMATIONAL (1.5)

Description:

In the HedgedPool contract’s configUnderlying function, there is a

lack of validation for the input parameters _spotShockPercentCalls

and _spotShockPercentPuts. These parameters are crucial as they

determine the percentage increase in the cash buffer calculated in the

getCashBuffer function based on market volatility and potential price

movements of the underlying assets. However, without validation ensuring

that these values are greater than or equal to 100 and less than or

equal to 100, respectively, the cash buffer might be under-calculated,

leading to insufficient collateralization.

If _spotShockPercentCalls or _spotShockPercentPuts are set to invalid

values, it implies an underestimation of potential price volatility.

This could result in a cash buffer that is too small to cover the actual

risk, posing a significant risk to the contract’s financial stability and

the security of its users’ assets.

BVSS:

AO:S/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:N/S:U (1.5)

Recommendation:

To mitigate this risk and ensure the integrity of the cash buffer cal-

culation, consider modifying the configUnderlying function to include

validation checks for _spotShockPercentCalls and _spotShockPercentPuts,

ensuring that the former is greater than or equal to 100 and less than or

equal for the latter. If the values are not valid, the function should

revert the transaction with an appropriate error message.

66

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

Remediation Plan:

ACKNOWLEDGED: Siren stated that “This is done in deployment scripts”.

67

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

5.16 (HAL-16) MISSING VALIDATION OF
PARAMETERS - INFORMATIONAL (1.5)

Description:

In the HedgedPool contract, the processOToken function adds oTokens to

the pool but does not validate whether the provided oToken actually corre-

sponds to the specified underlying asset and expiry timestamp. While the

oToken is created with these parameters by the trade executor, verifying

these details in processOToken is crucial for ensuring the integrity and

consistency of the contract’s operations.

Lack of this validation poses risks:

1. Incorrect oToken Association: Without validation, there’s a risk of

associating an oToken with an incorrect underlying asset or expiry,

leading to potential mismatches and operational issues.

2. Contract Integrity and Reliability: Ensuring that each oToken cor-

rectly represents its underlying asset and expiry is vital for the

contract’s reliability and the trust of its users.

BVSS:

AO:S/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:N/S:U (1.5)

Recommendation:

To enhance security and consistency, processOToken should be updated to

include validation checks confirming that the provided oToken matches

the specified underlying asset and expiry timestamp. This can be done by

querying the oToken’s properties and comparing them with the function’s

parameters. If a mismatch is detected, the function should revert to

prevent incorrect oToken processing. This validation will strengthen

the contract’s integrity and ensure accurate tracking and handling of

oTokens.

68

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

Remediation Plan:

PENDING: Siren stated that “This is low priority and will be fixed in

future versions”.

69

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

5.17 (HAL-17) SUBOPTIMAL HANDLING OF
LONG POSITIONS - INFORMATIONAL (1.0)

Description:

In the Controller contract’s mintOtoken function, there is a potentially

suboptimal handling of long positions when creating new short positions.

Currently, the function transfers long oTokens to the user and then

creates a new short position. However, this approach might not be the

most efficient, especially when there are existing long positions that

could offset the newly minted short positions.

BVSS:

AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U (1.0)

Recommendation:

To optimize the process:

1. Burn Long Offsets: Instead of transferring long oTokens to the user,

consider directly burning the long positions that can offset the new

shorts. This would streamline the process, reducing unnecessary

token transfers and simplifying position management.

2. Reassess Position Management: Review the overall logic for handling

long and short positions in the mintOtoken function. Ensure that the

process is efficient, transparent, and aligns with the contract’s

intended functionality.

3. Implement Conditional Logic: Introduce conditional logic to handle

different scenarios, such as when there are sufficient long positions

to offset the shorts versus when additional short positions need to

be created.

4. Test for Impact: Thoroughly test the revised implementation to

assess its impact on gas costs, transaction efficiency, and overall

70

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

contract behavior.

By adopting a more streamlined approach for managing long and short

positions in the mintOtoken function, the Controller contract can enhance

efficiency, reduce transaction costs, and simplify the user experience.

Remediation Plan:

NOT APPLICABLE: Siren stated that “The result of mintOToken is a short

position added to MarginVault and a corresponding long oToken balance

transferred to the user. Because it is possible that the vault already

contains a long position, we first transfer it to the user and then mint

and transfer the remainder. This is done to avoid simultaneously having

long and short position for the same oToken in the vault”.

71

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

5.18 (HAL-18) UNUSED FUNCTION -
INFORMATIONAL (0.5)

Description:

In the HedgedPool contract, the function setQuoteProvider is present but

appears not to be used in any integration with other contracts. This

function allows the contract owner to set or unset permissions for quote

provider addresses. The presence of unused functions in a smart contract,

especially those related to permissions or roles, could potentially lead

to confusion, increase the surface for potential bugs, and complicate

contract maintenance and audits.

Having an unused function doesn’t directly pose a security risk, but it

does have implications:

1. Maintenance Complexity: Unused functions can make the contract code

more complex than necessary, increasing the difficulty of mainte-

nance and understanding of the contract’s logic.

2. Potential for Future Errors: While currently unused, future modifi-

cations or extensions of the contract could inadvertently interact

with this function, leading to unintended consequences.

3. Audit Clarity: During security audits, the presence of unused func-

tions can distract or confuse, potentially leading to oversight of

more critical areas of the contract.

BVSS:

AO:S/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:N/S:U (0.5)

Recommendation:

To address this issue, consider the following actions:

72

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

1. Remove Unused Function: If setQuoteProvider is indeed not required

for the contract’s current and foreseeable functionality, removing

it could simplify the contract and reduce potential confusion.

2. Assess Future Necessity: Before removal, assess if the function

might be needed in future expansions or updates to the contract. If

there’s a potential use case on the horizon, consider keeping the

function, but clearly document its intended use.

Remediation Plan:

SOLVED: The issue was solved in commit 9a6bd4b.

73

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

https://github.com/sirenmarkets/core-v4/commit/9a6bd4b84f399c657124a4ae9393d75537a8fdf5

5.19 (HAL-19) UNUSED FUNCTION IN
LPMANAGER CONTRACT - INFORMATIONAL
(0.5)

Description:

The addPricedCash function in the LpManager contract is present, but not

utilized in any contract integrations. While this doesn’t pose a direct

security risk, it adds unnecessary complexity to the contract, potentially

leading to confusion and challenges in maintenance and auditing.

BVSS:

AO:S/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:N/S:U (0.5)

Recommendation:

To address this, it’s advisable to remove the addPricedCash function if

it’s confirmed to be redundant for the contract’s current and future

operations. This simplification will enhance the contract’s clarity and

maintainability. Additionally, ensure that this change is documented

and communicated clearly to all stakeholders. Regular code reviews and

refactoring should be a part of ongoing contract maintenance to keep the

codebase efficient and relevant.

Remediation Plan:

SOLVED: The issue was solved in commit 57c4a92.

74

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

https://github.com/sirenmarkets/core-v4/commit/57c4a92d59aacac1432e3c16adf1d963882e79fb

5.20 (HAL-20) OVERESTIMATION OF
EXECUTION FEE - INFORMATIONAL (0.5)

Description:

In the Gmx2Hedger contract, the _calculateExecutionFee function uses a

fixed ORDER_GAS_LIMIT of 7e6 for estimating the execution fee. This

approach may lead to a significant overestimation of the required

fee. As per GMX documentation, the execution fee should be calculated

using tx.gasprice * GasUtils.adjustGasLimitForEstimate(datastore,

estimatedGasLimit), where estimatedGasLimit varies based on the

operation (deposits, orders, withdrawals).

Overestimating the execution fee can result in:

1. Inefficient Gas Usage: Users may end up paying more in transaction

fees than necessary, leading to inefficiency and higher operational

costs.

2. Contract Reliability: Relying on an overestimated gas limit could

affect the contract’s reliability and user trust, especially if

users consistently notice higher than expected transaction costs.

BVSS:

AO:S/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:N/S:U (0.5)

Recommendation:

To align with GMX documentation and optimize gas usage, the

_calculateExecutionFee function should be updated to dynam-

ically calculate the execution fee based on the specific

operation being executed. This involves using GasUtils.

estimateExecuteDepositGasLimit, GasUtils.estimateExecuteOrderGasLimit,

or GasUtils.estimateExecuteWithdrawalGasLimit as appropriate for the

given context. Implementing this change ensures more accurate and

75

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

efficient execution fee calculations, enhancing the contract’s overall

efficiency and user experience.

Remediation Plan:

ACKNOWLEDGED: Siren stated that “This function is called only by the bot

and users never interact with it. Also, GMX does a refund: . So sending

a predefined amount instead of estimating will also save gas”

76

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

5.21 (HAL-21) INEFFECTIVE AFTER
ORDER FROZEN FUNCTION -
INFORMATIONAL (0.5)

Description:

The afterOrderFrozen function in Gmx2Hedger lacks implementation. Given

the contract’s design to use only market orders, this function is not

expected to be triggered. However, its current form without a revert

statement could lead to confusion or unintended execution.

BVSS:

AO:S/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:N/S:U (0.5)

Recommendation:

Introduce a revert statement in afterOrderFrozen to prevent any potential

misuse or unexpected behavior, ensuring the function aligns with the

intended design of using only market orders. This change will clarify

the function’s purpose and safeguard the contract against unforeseen

changes in the GMX system.

Remediation Plan:

SOLVED: The issue was solved in commit 71d6030.

77

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

https://github.com/sirenmarkets/core-v4/commit/71d6030a19c2254d7278234d7d2cd2455732120e

5.22 (HAL-22) REDUNDANT ORACLE
CALLS IN HEDGE FUNCTION -
INFORMATIONAL (0.5)

Description:

In the hedge function of the Gmx2Hedger contract, the IGmxOracle(gmxOralce

).getStablePrice is called twice for the same value. This redundancy might

lead to unnecessary gas usage, as the Solidity compiler may not optimize

by reusing the result of the first call.

BVSS:

AO:S/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:N/S:U (0.5)

Recommendation:

Optimize the function by storing the result of the IGmxOracle(gmxOralce

).getStablePrice call in a local variable and reusing it. This change

will reduce gas costs and enhance the contract’s efficiency.

Remediation Plan:

SOLVED: The issue was solved in commit c40f131.

78

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

https://github.com/sirenmarkets/core-v4/commit/c40f131b3ddb1ae44d010ee1c5649638e1bf5d44

5.23 (HAL-23) GAS INEFFICIENCIES IN
ERROR HANDLING - INFORMATIONAL (0.5)

Description:

In both the core-v4 and GammaProtocol repositories, there is a notable

inefficiency in error handling due to the use of string-based errors.

Examples of this issue can be seen in the core-v4 repository’s Gmx2Hedger

, TradeExecutor, and LpManager contracts, as well as across various

GammaProtocol contracts. String-based errors, while clear, are less gas-

efficient than custom errors. In Solidity, a string error, regardless of

its length, occupies a full 32-byte memory slot, leading to higher gas

consumption.

BVSS:

AO:S/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:N/S:U (0.5)

Recommendation:

To address this inefficiency:

1. Adopt Custom Errors: Transition from string-based errors to custom

errors in both core-v4 and GammaProtocol repositories. Custom errors

utilize a bytes4 error signature and are significantly more gas-

efficient.

2. Maintain Error Clarity: Ensure that the new custom errors are ad-

equately descriptive, maintaining the same level of clarity as the

original string messages.

Implementing custom errors in the core-v4 and GammaProtocol repositories

will result in substantial gas savings, improving the overall efficiency

and cost-effectiveness of these contracts without compromising the clarity

of error messages.

79

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

Remediation Plan:

"PENDING: Siren stated that “This is low priority and will be fixed in

future versions”

80

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S
CO

RE
-V

4

81

REVIEW NOTES

6.1 GammaProtocol

Controller.sol:

Function Visibility Mutability Modifiers

_-
isNotPartiallyPaused

Internal N -

_isNotFullyPaused Internal N -

_isAuthorized Internal N -

initialize External Y initializer

donate External Y NO

setSystemPartiallyPaused External Y onlyPartialPauser

setSystemFullyPaused External Y onlyFullPauser

setFullPauser External Y onlyOwner

setPartialPauser External Y onlyOwner

setCallRestriction External Y onlyOwner

setOperator External Y NO

refreshConfiguration External Y onlyOwner

cleanTmpVault External Y onlyOwner

_cleanTmpVault Internal Y -

operate External Y
nonReentrant

notFullyPaused
onlyAccessKey

sync External Y
nonReentrant

notFullyPaused

isOperator External N NO

getConfiguration External N NO

getProceed External N NO

isLiquidatable External N NO

getPayout Public N NO

82

RE
VI

EW
NO

TE
S

isSettlementAllowed External N NO

canSettleAssets External N NO

getAccountVaultCounter External N NO

hasExpired External N NO

getVault External N NO

getVaultExtended External N NO

getVaultExposure External N NO

getVaultWithDetails Public N NO

getOtokenIndex Public N NO

_runActions Internal Y -

_verifyFinalState Internal N -

_openVault Internal Y
notPartiallyPaused
onlyAuthorized

_depositLong Internal Y
notPartiallyPaused
onlyAuthorized

_withdrawLong Internal Y
notPartiallyPaused
onlyAuthorized

_depositCollateral Internal Y
notPartiallyPaused
onlyAuthorized

_-
withdrawCollateral

Internal Y
notPartiallyPaused
onlyAuthorized

_mintOtoken Internal Y
notPartiallyPaused
onlyAuthorized

_burnOtoken Internal Y
notPartiallyPaused
onlyAuthorized

_redeem Internal Y -

_settleVault Internal Y onlyAuthorized

_liquidate Internal Y notPartiallyPaused

_call Internal Y
notPartiallyPaused
onlyWhitelistedCallee

_checkVaultId Internal N -

_-
isCalleeWhitelisted

Internal N -

83

RE
VI

EW
NO

TE
S

_-
refreshConfigInternal

Internal Y -

_getTmpVault Internal N -

setLock External Y onlyOwner

General Overview of Controller Contract

• Purpose: Manages interactions in the Gamma Protocol, controlling how

users, through their vaults, can mint, redeem, and settle options,

among other actions.

• Inheritance: Inherits from OwnableUpgradeSafe, ReentrancyGuardUpgradeSafe

, and Initializable, indicating upgradeable contract functionality

with ownership control and reentrancy protection.

Key Functions and Features

• Contract State Management:

• Ability to pause/unpause the system either partially or fully,

affecting the availability of functions.

• Control over whether only whitelisted callees can be used for

specific contract calls.

• Vault Management:

• Opening new vaults, depositing and withdrawing collateral, and

managing positions in vaults.

• Tracking of individual vaults per account, including a count of

vaults per owner.

• Action Execution:

• Function operate to execute multiple actions in a single trans-

action.

• Supported actions include opening vaults, depositing/withdraw-

ing collateral, minting/burning options, and more.

84

RE
VI

EW
NO

TE
S

• Access and Authorization:

• Functions to set and manage account operators.

• Permissions for full and partial pausers to pause certain as-

pects of the system.

• Configurations and Address Management:

• Functions to refresh and retrieve configurations, like updating

the address book, oracle, calculator, and margin pool addresses.

• Ability to update pauser roles and restrict callable functions.

• Margin and Liquidation:

• Functions to check vault collateralization and perform liqui-

dations.

• Calculations for payouts, settlements, and determining if vaults

are undercollateralized.

• Utility Functions:

• Functions to donate assets to the pool, sync vault state, and

check if an oToken has expired.

• Retrieval of detailed vault information, including exposures

and extended vault data.

• Lock Mechanism:

• Feature to lock the controller, potentially restricting actions

to holders of a specific NFT.

Error Codes

• Uses a series of error codes (C1 to C42) for different failure

states, improving readability and debugging.

85

RE
VI

EW
NO

TE
S

Considerations and Potential Risks

• Complex Interactions: The contract handles a wide range of actions

and states, increasing the complexity of interactions and potential

for bugs or unintended consequences.

• Upgradeable Contract: As an upgradeable contract, it’s essential to

manage upgrades carefully to ensure compatibility and avoid intro-

ducing vulnerabilities.

• Dependency on External Contracts: Relies on external contracts

(e.g., Oracle, Calculator, Pool) for key functionalities, making

it crucial to ensure these dependencies are secure and reliable.

• System Pause Controls: The ability to pause the system, either

partially or fully, is powerful and must be managed judiciously to

avoid misuse or unintended impact on users.

• Access Control: The use of pauser roles and operator permissions adds

layers of access control, requiring careful management to maintain

system integrity.

• Liquidation Logic: The liquidation functions need to be robust

against market an

In-Function details

• The onlyWhitelistedCallee modifier does only trigger the whitelist

check (_isCalleeWhitelisted) if callRestricted is set. Used in-

ternally on the _call function to prevent un-whitelisted callee

addresses.

• The onlyAuthorized modifier does call the _isAuthorized function,

which verifies if the _accountOwner is the sender or the operator

was authorised by the sender via the setOperator function.

• The notPartiallyPaused modifier will verify if the systemPartiallyPaused

is not set. This modifier is being used on internal functions to

prevent partial actions. All external functions should first check

for the full pause to be consistent. As the comments, only redeem

and settleVault is allowed.

• The notFullyPaused modifier is used only on external functions such

as operate and sync.

86

RE
VI

EW
NO

TE
S

• The onlyAccessKey modifier will check when the isLocked flag is set

for balanceOf on an IERC1155 token. This means that the operate

function will only be callable if the sender holds a valid token.

• The initialize function is correctly implementing the initializer

modifier, preventing re-calls.

• The donate function does transfer the desired token/amount to from

the sender to the MarginPool increasing the assetBalance.

• setSystemPartiallyPaused and setSystemFullyPaused are limited to

respective callers to set the respective state on the system. Pre-

venting functions calls. The owner can change those addresses using

setFullPauser and setPartialPauser.

• The setOperator allows the caller to set an alternative address as

allowed to act on behalf of him.

• The _runActions function does accept a list of actions formatted

using the following struct:

Listing 8

1 enum ActionType {

2 OpenVault ,

3 MintShortOption ,

4 BurnShortOption ,

5 DepositLongOption ,

6 WithdrawLongOption ,

7 DepositCollateral ,

8 WithdrawCollateral ,

9 SettleVault ,

10 Redeem ,

11 Call ,

12 Liquidate ,

13 MintShortOptionLazy ,

14 WithdrawLongOptionLazy

15 }

16

17 struct ActionArgs {

18 // type of action that is being performed on the system

19 ActionType actionType;

20 // address of the account owner

21 address owner;

22 // address which we move assets from or to (depending on the

ë action type)

23 address secondAddress;

87

RE
VI

EW
NO

TE
S

24 // asset that is to be transferred

25 address asset;

26 // index of the vault that is to be modified (if any)

27 uint256 vaultId;

28 // amount of asset that is to be transferred

29 uint256 amount;

30 // each vault can hold multiple short / long / collateral

ë assets but we are restricting the scope to only 1 of each in this

ë version

31 // in future versions this would be the index of the short /

ë long / collateral asset that needs to be modified

32 uint256 index;

33 // any other data that needs to be passed in for arbitrary

ë function calls

34 bytes data;

35 }

• The _runActions functionality is described:

• Depending on the type, the _runActions function will execute a

different internal function. Some operations may require the

outer function (operate) to perform some additional checks.

• The _getTmpVault is used to retrieve a vault for the address 0

and ID of 0.

• The getVaultWithDetails will then get the vault for the action

owner and vault ID of the action. This function does also return

the last update timestamp of that vault. This is performed on

the operate function if vaultUpdated is set.

• The function will then copy over to the tmpVault all the action

owner collateralAssets and set its collateralAmounts to 0.

• Nothing until this point is preventing the parameters to be

the 0 address and id of 0. This means that both tmpVault

and returned vault of getVaultWithDetails could be the same.

However, _checkVaultId will later prevent vault ID of 0. Also,

some actions will check that the address is not zero.

• The _verifyFinalState does calculate the excess collateral and

verifies that the vault is valid via the getExcessCollateral

call.

• All check on the expiry value for past dates are using < expiry,

88

RE
VI

EW
NO

TE
S

for greater >= expiry, which means actions cannot collide in

expire timestamps.

• Actions explained:

• OpenVault: Will be using _parseOpenVaultArgs to verify

if the extra data decoded into an uint256 is on the

range of allowed vault types. It will then check the

accountVaultCounter counter being the argument and increase

it.

• DepositLongOption: Will be using _parseDepositArgs to check

that the owner is not zero address. Then getOtokenIndex to

fetch the last index on the otoken array. It then calls the

depositLong on the ControllerLib to settle the position on

the vault. The indexes are then stored both on the user’s

vault and on the tmp vault using their corresponding index.

• A critical check is performed, which consist of verifying

that the _args.from parameter is either the vault owner

or the sender (which previously the onlyAuthorized did

check for permissions from the owner to operate).

• Also the asset is verified for whitelisting

isWhitelistedOtoken and the amount must be greater than

0.

• If there exists any shortAmounts on the argument index

it will get burned. Only a long position will be added

with the difference between the requested amount and

the burned amount. Example of two deposits, one call

and one put:

89

RE
VI

EW
NO

TE
S

• WithdrawLongOption, WithdrawLongOptionLazy: Uses

_parseWithdrawArgs to set the second address to the

destination of withdrawal. Will get the index of the

array and verify expiration time. The internal vault

removeLong will make sure that no underflow occurs on the

subtraction on the index longAmounts. Both netExposurePuts

or netExposureCalls will be updated. Example of deposit

and withdraw:

90

RE
VI

EW
NO

TE
S

For malicious otoken input, the removeLong will verify that

the given index does contain the same otoken address

• DepositCollateral: Will parse deposit arguments

and verify that the collateral is valid by using

isWhitelistedCollateral. It will then call the vault

addCollateral function and either append or add into exist-

ing index, the amount. However, user can control index, so

this probably allows untrusted array manipulation. After

analysing the flow by unit testing, only one collateral

asset can exist at the time. The MarginCalculator will

verify that the vault does not exist in this limit.

• MintShortOption and MintShortOptionLazy: Does use

_parseMintArgs verifying that the owner is not the zero

address. The to address corresponds to the secondAddress.

91

RE
VI

EW
NO

TE
S

Will use the getOtokenIndex system to fetch previous Otoken

index if any. It will verify the token being whitelisted

and use _checkOtoken to make sure that the assets are being

used on the valid vault and verify expiration. If there is

any long position with that index Otoken it will offset it

with the short by removeLong.

• BurnShortOption: Will use _parseBurnArgs for sanity checks.

Only the owner or authorized can burn tokens. Burning

expired tokens is not allowed as per “C26” error. It will

then add a long position to the tmp vault to offset any other

position. For malicious otoken input, the removeShort will

verify that the given index does contain the same otoken

address.

• Redeem: This action can be called by anyone and there

is no onlyAuthorized. This means that the redeem will

only happen to the sender when calling burnOtoken. Only

expired tokens whose isDisputePeriodOver period is over can

be redeemed. The internal getPayout function will call

_convertAmountOnExpiryPrice and make sure that prices are

finalized, otherwise the real price past the expiration

will be used, resulting in incremented losses or undesired

profits.

• SettleVault: It is checking for onlyAuthorized based on the

arguments owner. Will add or remove collateral from the

vault based on the expired positions and the amount from

getExpiredPayout. For each otoken it will iterate over and

verify with canSettleAssets for settlement with the expiry

date. It will then remove the long/short position.

• Liquidate: It does use the _parseLiquidateArgs which will

set the receiver as the second address. Based on the vault

state, it will determine if either longs or shorts should

be liquidated. In case of short liquidation, It will burn

otokens, remove collateral and remove the short position.

It will then transfer the liquidated collateral amount to

the receiver. For the long position, it will transfer

collateral from the sender to the pool and add those as the

collateral for the liquidated vault, removing the long on

92

RE
VI

EW
NO

TE
S

the process. Finally, it will transfer the otoken position

to the receiver address. For malicious inputs, the otoken

is verified to be the same as the being liquidated vault

one.

• Call: This does allow executing arbitrary calls. It will

be using the secondAddress as the contract that needs to be

called. The onlyWhitelistedCallee will make sure that only

whitelisted contracts can be called.

• The operate function is using a list of ActionArgs as parameters.

It will The struct has the following details:

93

RE
VI

EW
NO

TE
S

MarginCalculator.sol:

Function Visibility Mutability Modifiers

setCollateralDust External Y onlyOwner

setStrikeIncrement External Y onlyOwner

getCollateralDust External N -

getMarginRequired External N -

getMarginRequiredWithDiff External N -

getExcessCollateral External N -

getExpiredPayout Public N -

_-
getExpiredCashValue

Internal N -

_getMarginRequired Internal N -

min Internal N -

_-
convertAmountOnLivePrice

Internal N -

_-
convertAmountOnExpiryPrice

Internal N -

_-
convertAmountOnStrikePrice

Internal N -

_getVaultDetails Internal N -

_isNotEmpty Internal N -

_checkIsValidVault Internal N -

_getProductHash Internal N -

_getCashValue Internal N -

isLiquidatable External N -

getShortLiquidationPrice External N -

getLongLiquidationPrice External N -

getExpiredPayoutRate External N -

getNakedMarginRequired External N -

94

RE
VI

EW
NO

TE
S

General Overview of MarginCalculator Contract

• Purpose: This contract calculates margin requirements and checks

the validity of vaults in options trading.

• Inheritance: Inherits from Ownable, suggesting certain functions

are restricted to the contract owner.

• Dependencies: Uses SafeMath for safe arithmetic operations and

FixedPointInt256 for fixed-point arithmetic.

Key Functions and Features

• Vault Details Structure: A comprehensive struct VaultDetails is used

to store detailed information about a vault, including positions,

expiration times, asset details, and more.

• Oracle Interface: Utilizes an oracle interface for fetching asset

prices, crucial for calculating margin requirements and payouts.

• Naked Margin Calculator: Integrates with an external

NakedMarginCalculator contract for specific margin calcula-

tions.

Margin Calculation and Validation Functions

• getMarginRequired: Calculates the required margin for a given vault.

• getMarginRequiredWithDiff: Similar to getMarginRequired, but con-

siders position differences in the calculation.

• getExcessCollateral: Determines the excess or deficit collateral in

a vault.

• getExpiredPayout: Calculates gains or losses from expired options

in a vault.

• isLiquidatable: Checks if a vault is undercollateralized and hence

liquidatable.

Setters and Configurations

95

RE
VI

EW
NO

TE
S

• setCollateralDust: Sets a minimum collateral amount (dust) for a

given asset.

• setStrikeIncrement: Configures the strike price increment for op-

tions of specific asset pairs.

Price Conversion and Calculation Helpers

• _convertAmountOnLivePrice: Converts an amount from one asset to

another based on current prices.

• _convertAmountOnExpiryPrice: Converts an amount between assets

based on prices at a specific expiry timestamp.

• _convertAmountOnStrikePrice: Converts an amount between the strike

asset and collateral asset, considering the strike price.

Vault Handling Helpers

• _getVaultDetails: Extracts and structures details from a given

vault.

• _checkIsValidVault: Validates the structure and contents of a vault.

• _getProductHash: Generates a hash to uniquely identify an option

product.

Liquidation and Payout Calculations

• getShortLiquidationPrice and getLongLiquidationPrice: Calculate the

liquidation price for short and long positions.

• getExpiredPayoutRate: Determines the payout rate for an expired

option.

Miscellaneous

• min: A helper function to find the minimum of two values.

• _isNotEmpty: Checks if an array of addresses is not empty.

96

RE
VI

EW
NO

TE
S

Potential Considerations and Risks

• Complex Calculations: The contract’s calculations for margin, liq-

uidation prices, and payouts are multifaceted and depend on accurate

inputs, particularly from the oracle and the NakedMarginCalculator.

• External Dependencies: Relies heavily on external contracts (oracle,

NakedMarginCalculator) for critical data, introducing dependencies

that need to be robust and reliable.

• Oracle Price Accuracy: The oracle’s price data is crucial for many

calculations. Any inaccuracies or delays in updating prices could

affect the contract’s functions.

• Vault Validation: The _checkIsValidVault function ensures vault

integrity, but the complexity of criteria means any oversight in

validation logic could lead to issues in vault handling.

• Dust Configuration: The concept of ‘dust’ (minimal collateral

amount) introduces an additional parameter that needs careful man-

agement to prevent dust amounts from being either too restrictive

or too permissive.

In-Function details

• getExcessCollateral function does take a valid vault. It will verify

that the collateralAssets is no longer than 1. Which means only one

collateral asset can exist.

• The _getVaultDetails will return just the collateral information

if oTokens is empty.

• If there exists oTokens the underlyingAsset, strikeAsset and

collateralAsset is defined by the oTokens[0] information.

• underlyingPrice is obtained using oracle getPrice. The value

is factored by 1e8.

• minExpiry is bumped to block.timestamp if exceeded.

• numExpiries: Calculates the number of expiry events for a vault.

It first checks if there’s at least one future expiry, and then

adds additional weekly expires if the maximum expiry date is

more than a day ahead.

97

RE
VI

EW
NO

TE
S

• It will iterate over all OToken long and short position, skipping

offsets of 0 amount.

• _convertAmountOnExpiryPrice does have a new argument

_requireFinalized that will make sure that the oracle dispute

period is over.

• The _getExpiredCashValue is multiplied by -position as a posi-

tive value (meaning that there are more shorts than longs) means

an obligation in value.

• The _getMarginRequired function does perform an invert for loop,

starting from numExpiries and decrementing its value underflow-

ing. When the values are greater than the original numExpiries

the loop is completed. This allows iterating from the end of

the list to the beginning.

• numStrikes will be more than 1 always, which means that the

second loop based on _vaultDetails.numStrikes will start

from either 0 or a positive value.

• If vars.isPut is true, the range is from _vaultDetails.

numStrikes - 1 down to 0 (inclusive).

• If vars.isPut is false, the range is from 0 up to

_vaultDetails.numStrikes - 1 (inclusive).

• strikePrice is getting calculated based on strikeIncrement

and the numStrikes index.

• The nakedPortion is calculated based on the further expiring

remaining long liquidity offset and the current position.

• To calculate the nakedMargin and nakedPremium, the

getNakedMarginRequired2 function is being used. Only

on the former, the spotShock is being applied, allowing

higher margin on rapid market volatility changes. If the

spotShock value is not set, margin will not be incremented

by it and standard margin returned.

• The nakedMargin and coveredNakedMargin are set to the max

value of its corresponding Margin and Premium Calls/Puts.

98

RE
VI

EW
NO

TE
S

NakedMarginCalculator:

Function Visibility Mutability Modifiers

setUpperBoundValues External Y onlyOwner

updateUpperBoundValue External Y onlyOwner

setSpotShock External Y onlyOwner

getTimesToExpiry External N -

getMaxPrice External N -

getSpotShock External N -

getShockedPrice External N -

_-
findUpperBoundValue

Internal N -

findUpperBoundValue External N -

getNakedMarginRequired External N -

getNakedMarginRequired2 Public N -

_getProductHash Internal N -

getOptionType Public N -

makeShortScaledDetails Internal N -

• The getNakedMarginRequired2 function does calculate the margin

requirements for a given position by using what is described on

https://medium.com/opyn/partially-collateralized-options-now-in-

defi-b9d223eb3f4d.

• Purpose: This contract is designed to validate vaults, calculate

margin requirements, and compute settlement proceeds for options

trading.

• Ownable: Inherits from the Ownable contract, implying only the owner

can execute certain functions.

• Use of SafeMath and FixedPointInt256: Ensures safe arithmetic op-

erations and fixed-point arithmetic.

99

RE
VI

EW
NO

TE
S

Key Functions and Features

• setUpperBoundValues and updateUpperBoundValue:

• Sets and updates the upper bound values for options trading.

• Risk/Issue: If not properly updated or managed, could lead to

incorrect margin calculations.

• setSpotShock:

• Sets the spot shock value, which is critical in calculating the

required margin.

• Risk/Issue: Inaccurate shock values can lead to either over-

collateralization or under-collateralization.

• getNakedMarginRequired and getNakedMarginRequired2:

• Calculates the collateral required for naked margin vaults.

• Risk/Issue: Complex calculations with multiple inputs; errors

in inputs or logic could significantly impact margin require-

ments.

• Time to Expiry Management:

• Functions like getTimesToExpiry manage the array of expiry

times.

• Risk/Issue: Mismanagement or inaccuracies in expiry times can

affect option pricing and risk assessments.

• Product Hash Management:

• Uses product hashes to identify option contracts uniquely.

• Risk/Issue: Collisions or incorrect hash calculations could

lead to misidentification of contracts.

• Option Type Identification (getOptionType):

• Determines the type of option (PUT, COVERED_CALL, etc.) based

on the collateral and underlying assets.

• Risk/Issue: Misclassification can lead to incorrect margin re-

quirements or contract execution.

• Shock Price Calculation (getShockedPrice):

• Adjusts the underlying price based on the shock value.

100

RE
VI

EW
NO

TE
S

• Risk/Issue: Critical for margin calculations; errors can lead

to significant financial implications.

• findUpperBoundValue and _findUpperBoundValue:

• Finds the upper bound value for product by expiry timestamp.

• Risk/Issue: Essential for correct option valuation; discrepan-

cies can lead to mispricing.

Discrepancies and Potential Risks

• Vault Validation: The contract appears to focus on naked margin

vaults, which might differ from other protocols where vaults can be

fully collateralized. This might lead to a different risk profile

compared to protocols mentioned in the Medium article.

• Complexity in Margin Calculations: The contract’s margin calcula-

tions are complex and depend on several variables. Any miscalcula-

tion or misestimation (like spot shock or upper bound values) could

lead to substantial financial risks.

• Dependence on External Inputs: Functions like getNakedMarginRequired

depend heavily on external inputs (e.g., underlying price), which

introduces a dependency on the accuracy and timeliness of external

data.

• Collateral Asset Limitation: The contract seems to be designed with

a specific focus on certain types of collateral and options. This

may limit its flexibility compared to other protocols that might

offer a broader range of collateral types.

• Time Sensitivity: Functions involving expiry times are sensitive

to timing and ordering. Mishandling these aspects could result in

incorrect valuations or contract behaviors.

• Owner Privileges: The owner has significant control over critical

parameters like upper bound values and spot shock. This centraliza-

tion poses a risk of manipulation or error.

101

RE
VI

EW
NO

TE
S

6.2 Core

HedgedPool.sol:

Function Visibility Mutability Modifiers

onlyKeeper Internal N -

onlyAccessKey Internal N -

__HedgedPool_init Public Y initializer

getTotalPoolValue Public N -

getTotalPoolValueCached Public N -

settleAll Public Y -

closeRound External Y onlyKeeper

closeRoundAdmin External Y onlyOwner

_closeRound Internal Y -

processWithdrawals Internal Y -

redeemShares External Y nonReentrant

_redeemShares Private Y -

requestWithdrawal External Y nonReentrant

withdrawCash External Y nonReentrant

requestDeposit External Y
nonReentrant,
requestDeposit

cancelPendingDeposit External Y nonReentrant

getCollateralBalance Public N -

getCashBuffer Public N -

decimals Public N -

balanceOf Public N -

_transfer Internal Y -

processOrder External Y nonReentrant

102

RE
VI

EW
NO

TE
S

getActiveOToken Public N -

getActiveOTokens Public N -

updateSeriesPerExpirationLimitPublic Y onlyOwner

processOToken Internal Y -

setHedger External Y onlyOwner

syncMargin External Y onlyKeeper

_syncVaultMargin Internal Y -

configUnderlying Public Y onlyOwner

getAllUnderlyings External N -

setAllowedExpirations External Y onlyOwner

setKeeper External Y onlyOwner

setQuoteProvider External Y onlyOwner

refreshConfiguration External Y onlyOwner

_-
refreshConfigInternal

Internal Y -

hasUnderlying External N -

setLock External Y onlyOwner

Overview of the HedgedPool Contract The HedgedPool contract, based on

the provided code, appears to be a financial instrument in the decen-

tralized finance (DeFi) space. It integrates with the Opyn protocol

(Gamma protocol) for options trading and risk management. The contract

is upgradeable and includes mechanisms for liquidity provision, options

trading, fee collection, and hedging.

Key Functions and Features

1. Liquidity Management: Allows liquidity providers (LPs) to deposit

and withdraw collateral, with mechanisms to handle these requests.

103

RE
VI

EW
NO

TE
S

2. Round Management: Implements rounds for deposits and withdrawals,

with LPs able to request participation in these rounds.

3. Options Trading: Processes orders for options trading, adjusting

the pool’s exposure and ensuring compliance with predefined strike

price ranges and expiration dates.

4. Expiry Settlements: Settles expired options and updates vault mar-

gins accordingly.

5. ERC1155 Compliance: Inherits ERC1155Holder, enabling the contract

to manage ERC1155 tokens.

6. Hedging Mechanism: Includes functions to set up hedging strategies

for different underlying, adjusting the margin in vaults.

7. Fee Collection: Integrates with a fee collector for fee management

and distribution.

8. Governance and Access Control: Implements owner-specific functions

for configuration and access control for keepers and other roles.

Considerations and Risks

1. Complexity and Integration Risks: High complexity due to interac-

tions with multiple external contracts and protocols (e.g., Gamma

protocol, Opyn). This complexity increases the risk of integration

errors and unexpected behaviors.

2. Upgradeability Risks: Being an upgradeable contract, there’s a risk

of bugs in future upgrades. Proper governance and secure upgrade

paths are essential.

3. Reentrancy Risks: Functions interacting with external contracts

need safeguarding against reentrancy attacks.

4. Liquidity and Slippage Concerns: The mechanisms for managing liq-

uidity rounds and options trading need to ensure fairness and effi-

ciency, minimizing slippage and adverse impacts on LPs.

5. Smart Contract Dependencies: Relies heavily on external contracts

(e.g., Oracles, Margin Calculators). Any vulnerabilities in these

dependencies pose a risk.

6. Operational Security: Access control for administrative functions

and keeper roles requires stringent management to prevent unautho-

rized access and centralization risks.

104

RE
VI

EW
NO

TE
S

7. Gas Efficiency: Complex functions might be gas-inefficient, affect-

ing transaction costs for users.

8. Regulatory Compliance: As a financial instrument in the DeFi space,

it should adhere to evolving regulatory standards and considerations.

9. User Experience: The contract’s complexity might pose challenges in

user understanding and interaction, necessitating clear documenta-

tion and user interfaces.

10. Audit Necessity: Given the contract’s complexity and financial na-

ture, regular and thorough audits are recommended to identify and

mitigate potential vulnerabilities.

In-Function details

• The keepers system with its corresponding functions to set them

(setKeeper, only owner), allows function to be limited by some

whitelisted entities. Only closeRound and syncMargin does use this

functionality.

• The onlyAccessKey modifier does restrict functions via the ownership

of an ERC1155 token. Only requestDeposit does use this functional-

ity.

• redeemShares is expected to be called by anyone. The caller is

transferred over into the internal/private function via lpAddress

to the redeemShares on the LpManager contract. It will transfer to

the caller the sharesAmount.

• get8amAligned can align on Friday because the unix timestamp of 0

corresponds to a Thursday 00:00 GMT. By adding 1 day and 8 hours,

you get Friday 8AM GMT.

• lastSettledExpiry will be set to the next Friday if initialised

between Thursday 00:00 GMT and Friday 08:00 GMT. Otherwise,

previous Friday is used.

• withdrawalRoundEnd is lastSettledExpiry minus 1 week. Which

means that if initialised before Thursday 00:00 GMT it will

correspond to 2 weeks before.

• depositRoundEnd will always return the current day at 8AM GMT,

unless the timestamp for the initialisation is between 00:00-

8:00, in that case it will return previous day 8AM GMT time.

105

RE
VI

EW
NO

TE
S

This means that there is no guarantee that depositRoundEnd will be

before or after lastSettledExpiry during initialisation.

• pricePerShare is a value starting at 1e8, corresponding to a 1. There

are two different functions that allow setting the value closeRound

and closeRoundAdmin. The former does perform validation on the new

value being on the 90-110% range. The latter does not perform any

sort of value validation and only the admin can call it.

• The round is kept per pool under LpManager on depositRounds and

synced with the pool timestamps.

• requestDeposit is only allowed to NFT holders. It will transfer the

collateral amount to the pool and requestDeposit on the LpManager.

• closeRound and closeRoundAdmin, will verify that lastSettledExpiry

was reached and if in the withdrawalRoundEnd period it will

call closeWithdrawalRound on the LpManager and extend the

withdrawalRoundEnd by 1 week. It will also store the new price per

share specified on the arguments under pricePerShareCached.

• If the depositRoundEnd is in the past, after 8AM of that

day the closeDepositRound on the LpManager is called and the

depositRoundEnd incremented by 1 day.

• If the withdrawalRoundEnd is in the past, after 8AM of Fri-

day, the closeWithdrawalRound on the LpManager is called and

withdrawalRoundEnd incremented by 1 week.

• cancelPendingDeposit: will call cancelPendingDeposit on the

ILpManager and transfer the collateral back to the caller.

• requestWithdrawal: Will first redeem any unredeemed shares first.

Then perform the request on the LpManager and finally burn the shares

amount from the caller and mint it on the pool to track.

• withdrawCash does call the LpManager.withdrawCash function and does

transfer the cash amount to the user, if any.

106

RE
VI

EW
NO

TE
S

• processOrder is being called by the executor. It will verify if the

pool has enough collateral to cover the trade. For each order legs,

it will process the token.

• processOToken : If the otoken is not present as active it will

validate the expiry timestamp, verify count limits and that

strike ranges are set for it. It will then track the new otoken

as active and store it based on the expiry under oTokensByExpiry.

• settleAll can be called by anyone.

• syncMargin, only callable by keepers. There is no check on whether

hedgers[underlying[i]] is none zero or set. Any collateral excess is

moved out of vaults. For the underlaying, the corresponding hedger

sync is called.

• setHedger, only allowed to the owner. It will register a hedger for

a given underlying token and approve the collateral to spend from

the pool. It will revoke previous hedge if exists.

• configUnderlying allows setting for a given _underlying the

allowedStrikeRanges and spotShockPercent. It will also register

it on the underlyingTokens list and create a new vault for the

caller via openMarginVault. This function is owner protected. If

the user does remove the underlying and adds it again, the open

vault function will not fail, as the new vault is appended to the

marginVaults mapping array.

• setAllowedExpirations does set the underlying numMonths, numQuarters

and allowDailyExpiration. If those values are not set, they are

not causing any issue on the isValidExpiry function and a false is

returned.

• processWithdrawals will get the cash buffer, based on puts/calls po-

sitions and the shock percentage. Based on the unfilled shares and

the cached price per share, for the last closed round and an extra

10% it does calculate the required amount: uint256 requiredAmount

= (unfilledShares * pricePerShareCached * 11)/1e9. (The operation

keep in mind that pricePerShareCached is 1e8 based and the 11 corre-

sponds to a 110 increment which gets divided by an extra 1e1). If

there is amount to withdraw, the addPendingCash function is called.

107

RE
VI

EW
NO

TE
S

LpManager.sol:

In-Function details

• redeemShares can be called by anyone, there is no restriction on

the caller being a valid pool. Internally, the getDepositStatus is

called.

• It will always reset the roundId to 0 if no cashPending.

• requestDeposit does store based on the caller (anyone can call the

function, no modifier restriction) the cash amount per this deposit

round. unredeemedShares will contain any previous amount for past

pending rounds.

• It will always bump the deposit round to latest.

• closeWithdrawalRound based on the caller, treated as the pool. Will

compute the cash needed based on the already filled shares and the

total shares times the price per share (the result will be divided

by 1e8 as per the pricePerShare precision). The pending shares,

will be added to the sharesFilled. The cashPending, added to the

total cash.

• getWithdrawalStatus will verify if shares a present for withdrawal

and return 0 if not.

• getDepositStatus will return the deposit amount if the current round

is the same as the one stored on the depositor as pending cash.

Otherwise, it will get the round id for the last deposit and compute

the sharesRedeemable based on the pricePerShare of that round. This

function is only used on redeemShares.

• During deposit, if a previous round was not redeemed, they will

be storing the amount to unredeemedShares already.

• cancelPendingDeposit will act only on the current round id and

decrease both the DepositRound and Deposit amounts.

• closeDepositRound: Will store the previous round pricePerShare and

advance on the next round, returning the added shares based on the

new pricePerShare.

• addPendingCash which is called during processWithdrawals will in-

crement the cashPending for the current round with the parameter.

108

RE
VI

EW
NO

TE
S

Gmx2Hedger.sol:

Function Visibility Mutability Modifiers

hedgerType External N -

updateConfig External Y onlyOwner

<Receive Ether> External N -

_updateConfig Private Y -

afterOrderExecution External Y -

afterOrderCancellation External Y -

afterOrderFrozen External Y -

hedge External N onlyAuthorized

sync External Y onlyAuthorized

getDelta External N -

getCollateralValue External N -

getRequiredCollateral External N -

_sync Internal Y -

_syncDelta Internal Y noPendingOrders

_-
getPositionInformation

Internal N -

_-
getPositinPnlCollateral

Internal N -

_-
createOrderParamAddresses

Internal N -

_-
orderParamAddresses

Internal N -

_-
createOrderParamNumbers

Internal N -

_orderParamNumbers Internal N -

_createMarketOrder Internal Y -

_sendCollateral Internal Y -

_changePosition Internal Y -

109

RE
VI

EW
NO

TE
S

_depositCollateral Internal Y -

_-
withdrawCollateral

Internal Y -

_-
gmxPositionIncrease

Internal Y -

_-
gmxPositionDecrease

Internal Y -

_-
gmxDepositCollateral

Internal Y -

_-
gmxWithdrawCollateral

Internal Y -

_-
calculateAdjustedExecutionPrice

Internal N -

_getPositionKey Internal N -

_getMarginRequired Internal N -

_-
getAcceptablePrice

Internal N -

_getMarketPrices Internal N -

_-
calculateExecutionFee

Internal N -

transfer Public Y onlyOwner

resetPendingOrder Public Y onlyOwner

Overview The Gmx2Hedger contract is designed for the GMX v2 protocol,

a decentralized platform for trading perpetual contracts. It primarily

focuses on managing and hedging pool delta by engaging in perpetual

contract trading on GMX v2. The contract incorporates elements from

OpenZeppelin’s upgradeable contracts and uses SafeERC20 for safer ERC20

interactions.

Key Functions and Features

1. Hedging Delta Exposure: Executes strategies to hedge the delta

exposure of a pool through perpetual contracts on GMX v2.

110

RE
VI

EW
NO

TE
S

2. Position Management: Manages the opening, adjustment, and closing

of positions on GMX v2.

3. Collateral Handling: Manages the collateral associated with perpet-

ual contracts, including deposits and withdrawals.

4. Order Execution: Handles the creation, execution, and tracking of

orders on GMX v2.

5. Price and Market Data: Utilizes GMX v2 oracles for fetching market

and price data required for decision-making.

6. Configurability: Allows configuration of key parameters such as

leverage, exchange router, and market details.

7. Access Control: Leverages OpenZeppelin’s OwnableUpgradeable for

owner-specific functions and provides mechanisms for authorized op-

erations.

8. Callback Handling: Implements callbacks for post-order execution

activities.

9. Gas and Fee Management: Manages the computation and payment of gas

and other transaction-related fees.

Considerations and Risks

1. Complex Financial Operations: Managing perpetual contracts involves

complex financial mechanisms that carry inherent risks and require

precise execution.

2. Dependence on External Protocols: The contract’s functionality is

closely tied to the GMX v2 protocol and its associated contracts.

Changes in these external systems could impact the contract’s oper-

ations.

3. Upgradeable Contract Risks: Being upgradeable introduces additional

layers of complexity and potential points of failure.

4. Gas Efficiency: Operations, especially those interacting with

external contracts, might be gas-intensive, affecting the

cost-effectiveness of transactions.

111

RE
VI

EW
NO

TE
S

5. Security and Access Control: Functions with restricted access need

stringent security measures to prevent unauthorized or malicious

actions.

6. Market Risks and Slippage: Market volatility and slippage can impact

the contract’s hedging efficiency and overall performance.

7. Smart Contract Security: Vulnerabilities or bugs in the contract or

in the integrated GMX v2 components could lead to financial losses.

8. Regulatory Compliance: Involvement in derivative trading and hedging

might require adherence to specific regulations, depending on the

jurisdiction.

In-Function details

• The afterOrderExecution similarly to the gmxPositionCallback on ver-

sion 1 does verify that the caller is indeed the orderHandler.

• The internal _getPositionInformation function will use the none

inclusive range 0-2 on the getAccountPositions reader’s function.

Returning the long and short positions respectively.

• _syncDelta does use _getPositionInformation to get the long and

short positions. It will then remove the totalSizeInTokens decimals

by dividing it by the collateral decimals. The value is scaled to

1e8 (SIREN_DECIMALS).

• sync will call the _syncDelta function and _getPositionInformation

to fetch current positions and _getMarketPrices to obtain last

prices.

• The _getPositionKey does mimic the PositionUtils.getPositionKey

.

• The _getPositinPnlCollateral does use the reader

getPositionPnlUsd to fetch the current position PLN in

GMX decimals. It is then converted to collateral decimals

precision.

• It the required margin is less than the current, it will per-

form a _depositCollateral with the amount of difference and an

acceptable price threshold. Otherwise, a _withdrawCollateral.

112

RE
VI

EW
NO

TE
S

• _depositCollateral does cap the amount to the pool max amount and

calls _gmxDepositCollateral. However, the collateralDiff is using

the full amount, and not the capped amount.

• The execution fee is set to the current tx.gasprice times 7000000

.

• hedge will be based on a target, increase or decrease the GMX position

via _changePosition internal function.

113

RE
VI

EW
NO

TE
S

TradeExecutor:

Function Visibility Mutability Modifiers

setAddressBook External Y onlyOwner

onlyOrderKeeper Internal N -

setOrderKeeper External Y onlyOwner

setMinExecutionFee External Y onlyOwner

onlyAccessKey Internal N -

validateExpirations Internal N -

submitOrder External N -

getNextKey Internal Y -

validateExecuteOrderArgumentsInternal N -

deleteOrder Internal Y -

sendRefund Internal Y -

completeOrderAndIssueRefundInternal Y -

executeActions Public Y -

executeOrder External Y nonReentrant

cancelOrder External Y nonReentrant

setLock External Y onlyOwner

openMarginVault External Y -

_openMarginVault Internal Y -

getMarginVaultId External N -

setAuthorizedPool External Y onlyOwner

getOrderKeys Public N -

getOrderKeysByAccount Public N -

Overview The TradeExecutor contract serves as a comprehensive platform

for executing and managing options trades on the Opyn Gamma protocol.

114

RE
VI

EW
NO

TE
S

It provides a structured environment for users to submit, execute, and

manage orders, alongside handling collateral and vault interactions.

Key Features

1. Order Management: The contract allows users to submit and cancel

orders, ensuring that each order is uniquely identified and stored

on-chain.

2. Trade Execution: It includes mechanisms to execute trades based on

submitted orders, handling various aspects like option leg valida-

tion, expiration checks, and fee calculations.

3. Collateral and Vault Management: The contract integrates with the

Opyn Gamma protocol for options trading, managing collateral de-

posits, withdrawals, and vault operations.

4. Fee Handling: It manages the execution fees, including setting

minimum fees, refunding on order cancellation, and compensating

keepers for executing trades.

5. Access Control: Functions are in place to restrict certain oper-

ations to authorized users, such as order keepers or the contract

owner.

6. Order Validation: Validates orders and their components (legs) for

expiration and integrity, ensuring that only executable orders are

processed.

Considerations and Risks:

1. Smart Contract Risk: As with any complex smart contract, there is

a risk of bugs or vulnerabilities, which could impact the execution

and management of orders.

2. Dependency on External Protocols: The contract’s functionality is

closely tied to the Opyn Gamma protocol. Any changes or issues in

the Opyn Gamma protocol could directly affect the TradeExecutor.

115

RE
VI

EW
NO

TE
S

3. Execution Fee Fluctuations: The cost of executing orders could vary

with network conditions. Although the contract allows adjusting

minimum fees, rapid changes in network conditions could impact users’

costs.

4. Order Cancellation and Refunds: The process of order cancellation

and refunding execution fees adds complexity and potential points

of failure, especially in cases where refunds fail.

5. Order Expiration Handling: The contract’s strict checks on order and

leg expirations, while ensuring timeliness, could lead to increased

transaction rejections, especially in fast-moving market conditions.

6. Access Key Requirement: The contract has a mechanism to lock or

unlock order submission based on access key token ownership, which

could limit accessibility for some users.

7. Keeper Dependency: The reliance on external keepers for order ex-

ecution introduces a human element, which could lead to delays or

failures in order execution.

The TradeExecutor contract provides a structured and feature-rich en-

vironment for options trading but comes with inherent complexities and

dependencies typical of advanced DeFi protocols. Users and developers

should consider these aspects and conduct thorough due diligence before

interaction.

In-Function details

• validateExpirations will iterate each leg and make sure that none

is expired. This function, instead of reverting itself it will

return true/false which always poses a risk if the returned value

is not verified. In this case, it is being used with a revert under

submitOrder and with a terminating return on executeOrder. The

latter is not being called from another function that would assume

that a return meant a valid execution.

116

RE
VI

EW
NO

TE
S

• openMarginVault allows creating a new vault by any caller. In

case of deposit, the _collateralAsset will be verified on the con-

troller, but not the _underlyingAsset (which is latter verified

using validateExecuteOrderArguments)

• submitOrder can be called only with onlyAccessKey owners.

• It will validate expiration on all legs.

• Make sure that if a vault id is not specified, it will open a

new vault for the underlying. However, it does not validate the

traderVaultId is valid for this sender.

• It will then store the order via a unique nonce key to the

storage.

• executeOrder will use validateExecuteOrderArguments to validate all

order parameters. This function does perform underlaying checks and

premium amount limits.

• It will then validate all order expirations and in case of

invalid completeOrderAndIssueRefund will be called. This func-

tion does perform gas costs checks to refund the keeper with

the execution costs

• executeActions do correctly iterate over all legs and add it to the

corresponding actions1, actions2 and actions3.

117

RE
VI

EW
NO

TE
S

118

AUTOMATED TESTING

7.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance the coverage of cer-

tain areas of the scoped contracts. Among the tools used was Slither, a

Solidity static analysis framework. After Halborn verified all the con-

tracts in the repository and was able to compile them correctly into their

ABI and binary formats, Slither was run on the all-scoped contracts. This

tool can statically verify mathematical relationships between Solidity

variables to detect invalid or inconsistent usage of the contracts’ APIs

across the entire code-base.

Slither results:

GammaProtocol

Slither results for GammaProtocol

Finding Impact

MarginPool.transferToPool(address,address,uint256)

(contracts/core/MarginPool.sol#74-85) uses arbitrary from in

transferFrom: ERC20Interface(_asset).safeTransferFrom(_user,address

(this),_amount) (contracts/core/MarginPool.sol#83)

High

Otoken._getNameAndSymbol() (contracts/core/Otoken.sol#119-172)

calls abi.encodePacked() with multiple dynamic arguments:

- tokenName = string(abi.encodePacked(underlying,strike,

,_uintTo2Chars(day),-,monthFull,-,Strings.toString(year),

,displayStrikePrice,typeFull, ,collateral, Collateral))

(contracts/core/Otoken.sol#135-152)

High

PayableProxyController.operate(Actions.ActionArgs[],address) (contr

acts/external/proxies/PayableProxyController.sol#51-85) use

msg.value in a loop: ERC20Interface(address(weth)).safeIncreaseAllo

wance(action.secondAddress,msg.value)

(contracts/external/proxies/PayableProxyController.sol#71)

High

119

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

NakedMarginCalculator.timesToExpiryForProduct

(contracts/core/calculators/NakedMarginCalculator.sol#40) is never

initialized. It is used in:

- NakedMarginCalculator.setUpperBoundValues(address,address,address

,bool,uint256[],uint256[]) (contracts/core/calculators/NakedMarginC

alculator.sol#78-118)- NakedMarginCalculator.getTimesToExpiry(addre

ss,address,address,bool) (contracts/core/calculators/NakedMarginCal

culator.sol#184-192)-

NakedMarginCalculator._findUpperBoundValue(bytes32,uint256) (contra

cts/core/calculators/NakedMarginCalculator.sol#256-286)

High

MarginCalculator._getMarginRequired(MarginCalculator.VaultDetails)

(contracts/core/MarginCalculator.sol#470-801) performs a

multiplication on the result of a division:

- coveredPortion = FixedPointInt256.fromScaledUint(longOffset,BASE)

.div(fullPosition) (contracts/core/MarginCalculator.sol#584-586)

- vars.coveredNakedMarginCalls = vars.coveredNakedMarginCalls.add(n

akedMargin).mul(coveredPortion)

(contracts/core/MarginCalculator.sol#641-643)

Medium

MarginCalculator._getMarginRequired(MarginCalculator.VaultDetails)

(contracts/core/MarginCalculator.sol#470-801) performs a

multiplication on the result of a division:

- coveredPortion = FixedPointInt256.fromScaledUint(longOffset,BASE)

.div(fullPosition) (contracts/core/MarginCalculator.sol#584-586)

- vars.coveredNakedMarginPuts = vars.coveredNakedMarginPuts.add(nak

edMargin).mul(coveredPortion)

(contracts/core/MarginCalculator.sol#649-651)

Medium

MarginCalculator._getMarginRequired(MarginCalculator.VaultDetails)

(contracts/core/MarginCalculator.sol#470-801) performs a

multiplication on the result of a division:

- coveredPortion = FixedPointInt256.fromScaledUint(longOffset,BASE)

.div(fullPosition) (contracts/core/MarginCalculator.sol#584-586)

- vars.coveredNakedPremiumPuts = vars.coveredNakedPremiumPuts.add(n

akedPremium).mul(coveredPortion)

(contracts/core/MarginCalculator.sol#652-654)

Medium

120

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

MarginCalculator._getMarginRequired(MarginCalculator.VaultDetails)

(contracts/core/MarginCalculator.sol#470-801) performs a

multiplication on the result of a division:

- coveredPortion = FixedPointInt256.fromScaledUint(longOffset,BASE)

.div(fullPosition) (contracts/core/MarginCalculator.sol#584-586)

- vars.coveredNakedPremiumCalls = vars.coveredNakedPremiumCalls.add

(nakedPremium).mul(coveredPortion)

(contracts/core/MarginCalculator.sol#644-646)

Medium

MarginCalculator._getMarginRequired(MarginCalculator.VaultDetails)

(contracts/core/MarginCalculator.sol#470-801) uses a dangerous

strict equality:

- vars.optionType == NakedMarginCalculatorInterface.OptionType.PUT

|| vars.optionType ==

NakedMarginCalculatorInterface.OptionType.NAKED_CALL

(contracts/core/MarginCalculator.sol#725)

Medium

MarginCalculator._convertAmountOnExpiryPrice(FixedPointInt256.Fixed

PointInt,address,address,uint256,bool)

(contracts/core/MarginCalculator.sol#839-864) uses a dangerous

strict equality:

- priceA == 0 (contracts/core/MarginCalculator.sol#857)

Medium

MarginCalculator._getVaultDetails(MarginVault.Vault)

(contracts/core/MarginCalculator.sol#898-1033) uses a dangerous

strict equality:

- require(bool,string)(vaultDetails.expirations[expirationId] == 0

|| vaultDetails.expirations[expirationId] ==

expiryTimestamp,duplicate expirationId)

(contracts/core/MarginCalculator.sol#1001-1005)

Medium

MarginCalculator._getMarginRequired(MarginCalculator.VaultDetails)

(contracts/core/MarginCalculator.sol#470-801) uses a dangerous

strict equality:

- vars.isPut && _vaultDetails.putSumShort[expId] == 0 &&

_vaultDetails.putSumLong[expId] == 0

(contracts/core/MarginCalculator.sol#510)

Medium

MarginCalculator._convertAmountOnExpiryPrice(FixedPointInt256.Fixed

PointInt,address,address,uint256,bool)

(contracts/core/MarginCalculator.sol#839-864) uses a dangerous

strict equality:

- priceB == 0 (contracts/core/MarginCalculator.sol#858)

Medium

121

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

MarginCalculator._getVaultDetails(MarginVault.Vault)

(contracts/core/MarginCalculator.sol#898-1033) uses a dangerous

strict equality:

- vaultDetails.expirations[expirationId] == 0

(contracts/core/MarginCalculator.sol#1006)

Medium

MarginCalculator._getMarginRequired(MarginCalculator.VaultDetails)

(contracts/core/MarginCalculator.sol#470-801) uses a dangerous

strict equality:

- vars.optionType ==

NakedMarginCalculatorInterface.OptionType.NAKED_PUT ||

vars.optionType ==

NakedMarginCalculatorInterface.OptionType.COVERED_CALL

(contracts/core/MarginCalculator.sol#738)

Medium

MarginCalculator._getMarginRequired(MarginCalculator.VaultDetails)

(contracts/core/MarginCalculator.sol#470-801) uses a dangerous

strict equality:

- ! vars.isPut && _vaultDetails.callSumShort[expId] == 0 &&

_vaultDetails.callSumLong[expId] == 0

(contracts/core/MarginCalculator.sol#506)

Medium

122

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

Reentrancy in Controller.operate(Actions.ActionArgs[])

(contracts/core/Controller.sol#360-390): External calls:

- (vaultUpdated,needsFullMarginCheck,vaultOwner,vaultId) =

_runActions(_actions) (contracts/core/Controller.sol#367)

- CalleeInterface(_args.callee).callFunction(msg.sender,_args.data)

(contracts/core/Controller.sol#970)

- ControllerLib.redeem(_args,pool,oracle,calculator,whitelist)

(contracts/core/Controller.sol#937)

- ControllerLib.settleVault(_args,pool,oracle,calculator,vaults[_ar

gs.owner][_args.vaultId]) (contracts/core/Controller.sol#948)

- ControllerLib.depositCollateral(_args,vaults[_args.owner][_args.v

aultId],_getTmpVault(),pool,whitelist)

(contracts/core/Controller.sol#859)

- ControllerLib.withdrawCollateral(_args,vaults[_args.owner][_args.

vaultId],pool) (contracts/core/Controller.sol#874)

- pool.transferToUser(_args.asset,_args.to,_args.amount)

(contracts/libs/ControllerLib.sol#224)

- ControllerLib.liquidate(_args,pool,calculator,vaults[_args.owner]

[_args.vaultId]) (contracts/core/Controller.sol#961)

- ControllerLib.burnOtoken(_args,vaults[_args.owner][_args.vaultId]

,_getTmpVault(),tmpVaultOtokenIndex)

(contracts/core/Controller.sol#925)

- ControllerLib.mintOtoken(_args,vaults[_args.owner][_args.vaultId]

,_getTmpVault(),tmpVaultOtokenIndex,pool,whitelist)

(contracts/core/Controller.sol#894-901)

- ControllerLib.withdrawLong(_args,vaults[_args.owner][_args.vaultI

d],_getTmpVault(),tmpVaultOtokenIndex,pool)

(contracts/core/Controller.sol#836-842)

- ControllerLib.depositLong(_args,vaults[_args.owner][_args.vaultId

],_getTmpVault(),tmpVaultOtokenIndex,pool,whitelist)

(contracts/core/Controller.sol#805-812)

- pool.transferToUser(_args.asset,_args.to,_args.amount)

(contracts/libs/ControllerLib.sol#176)

- pool.transferToPool(_args.asset,_args.from,_args.amount)

(contracts/libs/ControllerLib.sol#207)

- otoken.burnOtoken(_args.from,_args.amount)

(contracts/libs/ControllerLib.sol#304)

- otoken.burnOtoken(msg.sender,_args.amount)

(contracts/libs/ControllerLib.sol#338)

- pool.transferToUser(collateral,_args.receiver,payout)

(contracts/libs/ControllerLib.sol#340)

- OtokenInterface(_args.asset).burnOtoken(_args.from,burnAmount)

(contracts/libs/ControllerLib.sol#138)

- pool.transferToUser(_args.otoken,_args.to,longOffset)

(contracts/libs/ControllerLib.sol#262)

- OtokenInterface(vars.oToken).burnOtoken(msg.sender,_args.amount)

(contracts/libs/ControllerLib.sol#499)

- vars.pool.transferToUser(vault.collateralAssets[0],_args.receiver

,vars.collateralAmount) (contracts/libs/ControllerLib.sol#506)

- pool.transferToPool(_args.asset,_args.from,_args.amount -

burnAmount) (contracts/libs/ControllerLib.sol#146)

- OtokenInterface(_args.otoken).mintOtoken(_args.to,_args.amount -

longOffset) (contracts/libs/ControllerLib.sol#269)

- vars.pool.transferToPool(vault.collateralAssets[0],msg.sender,var

s.collateralAmount) (contracts/libs/ControllerLib.sol#519)

- vars.pool.transferToUser(vars.oToken,_args.receiver,_args.amount)

(contracts/libs/ControllerLib.sol#525)

- otoken.burnOtoken(address(pool),vault.longAmounts[i])

(contracts/libs/ControllerLib.sol#393) State variables written

after the call(s):

- _cleanTmpVault() (contracts/core/Controller.sol#374)

- oTokenIndexes[address(0)][0][tmpVault.oTokens[i]] = 0 (contracts/

core/Controller.sol#349)Controller.oTokenIndexes

(contracts/core/Controller.sol#110) can be used in cross function

reentrancies:

- Controller._cleanTmpVault()

(contracts/core/Controller.sol#345-352)

- Controller.getOtokenIndex(address,uint256,address)

(contracts/core/Controller.sol#626-642)

- Controller.oTokenIndexes (contracts/core/Controller.sol#110)

- _cleanTmpVault() (contracts/core/Controller.sol#384)

- oTokenIndexes[address(0)][0][tmpVault.oTokens[i]] = 0 (contracts/

core/Controller.sol#349)Controller.oTokenIndexes

(contracts/core/Controller.sol#110) can be used in cross function

reentrancies:

- Controller._cleanTmpVault()

(contracts/core/Controller.sol#345-352)

- Controller.getOtokenIndex(address,uint256,address)

(contracts/core/Controller.sol#626-642)

- Controller.oTokenIndexes (contracts/core/Controller.sol#110)

- _cleanTmpVault() (contracts/core/Controller.sol#388)

- oTokenIndexes[address(0)][0][tmpVault.oTokens[i]] = 0 (contracts/

core/Controller.sol#349)Controller.oTokenIndexes

(contracts/core/Controller.sol#110) can be used in cross function

reentrancies:

- Controller._cleanTmpVault()

(contracts/core/Controller.sol#345-352)

- Controller.getOtokenIndex(address,uint256,address)

(contracts/core/Controller.sol#626-642)

- Controller.oTokenIndexes (contracts/core/Controller.sol#110)

- vaultLatestUpdate[vaultOwner][vaultId] = now (contracts/core/Cont

roller.sol#372)Controller.vaultLatestUpdate

(contracts/core/Controller.sol#107) can be used in cross function

reentrancies:

- Controller.getVaultWithDetails(address,uint256)

(contracts/core/Controller.sol#611-617)

- vaultLatestUpdate[vaultOwner][vaultId] = now (contracts/core/Cont

roller.sol#382)Controller.vaultLatestUpdate

(contracts/core/Controller.sol#107) can be used in cross function

reentrancies:

- Controller.getVaultWithDetails(address,uint256)

(contracts/core/Controller.sol#611-617)

- _cleanTmpVault() (contracts/core/Controller.sol#374)

- delete vaults[address(0)][0] (contracts/core/Controller.sol#351)

Controller.vaults (contracts/core/Controller.sol#102) can be used

in cross function reentrancies:

- Controller._cleanTmpVault()

(contracts/core/Controller.sol#345-352)

- Controller._getTmpVault()

(contracts/core/Controller.sol#1004-1006)

- Controller.getOtokenIndex(address,uint256,address)

(contracts/core/Controller.sol#626-642)

- Controller.getVault(address,uint256)

(contracts/core/Controller.sol#535-537)

- Controller.getVaultExposure(address,uint256)

(contracts/core/Controller.sol#601-603)

- Controller.getVaultExtended(address,uint256)

(contracts/core/Controller.sol#556-595)

- Controller.getVaultWithDetails(address,uint256)

(contracts/core/Controller.sol#611-617)

- _cleanTmpVault() (contracts/core/Controller.sol#384)

- delete vaults[address(0)][0] (contracts/core/Controller.sol#351)

Controller.vaults (contracts/core/Controller.sol#102) can be used

in cross function reentrancies:

- Controller._cleanTmpVault()

(contracts/core/Controller.sol#345-352)

- Controller._getTmpVault()

(contracts/core/Controller.sol#1004-1006)

- Controller.getOtokenIndex(address,uint256,address)

(contracts/core/Controller.sol#626-642)

- Controller.getVault(address,uint256)

(contracts/core/Controller.sol#535-537)

- Controller.getVaultExposure(address,uint256)

(contracts/core/Controller.sol#601-603)

- Controller.getVaultExtended(address,uint256)

(contracts/core/Controller.sol#556-595)

- Controller.getVaultWithDetails(address,uint256)

(contracts/core/Controller.sol#611-617)

- _cleanTmpVault() (contracts/core/Controller.sol#388)

- delete vaults[address(0)][0] (contracts/core/Controller.sol#351)

Controller.vaults (contracts/core/Controller.sol#102) can be used

in cross function reentrancies:

- Controller._cleanTmpVault()

(contracts/core/Controller.sol#345-352)

- Controller._getTmpVault()

(contracts/core/Controller.sol#1004-1006)

- Controller.getOtokenIndex(address,uint256,address)

(contracts/core/Controller.sol#626-642)

- Controller.getVault(address,uint256)

(contracts/core/Controller.sol#535-537)

- Controller.getVaultExposure(address,uint256)

(contracts/core/Controller.sol#601-603)

- Controller.getVaultExtended(address,uint256)

(contracts/core/Controller.sol#556-595)

- Controller.getVaultWithDetails(address,uint256)

(contracts/core/Controller.sol#611-617)

Medium

123

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

Reentrancy in Controller._depositLong(Actions.DepositArgs)

(contracts/core/Controller.sol#793-817): External calls:

- ControllerLib.depositLong(_args,vaults[_args.owner][_args.vaultId

],_getTmpVault(),tmpVaultOtokenIndex,pool,whitelist)

(contracts/core/Controller.sol#805-812) State variables written

after the call(s):

- oTokenIndexes[_args.owner][_args.vaultId][_args.asset] =

_args.index (contracts/core/Controller.sol#814)Controller.oTokenInd

exes (contracts/core/Controller.sol#110) can be used in cross

function reentrancies:

- Controller._cleanTmpVault()

(contracts/core/Controller.sol#345-352)

- Controller.getOtokenIndex(address,uint256,address)

(contracts/core/Controller.sol#626-642)

- Controller.oTokenIndexes (contracts/core/Controller.sol#110)

- oTokenIndexes[address(0)][0][_args.asset] = tmpVaultOtokenIndex (

contracts/core/Controller.sol#816)Controller.oTokenIndexes

(contracts/core/Controller.sol#110) can be used in cross function

reentrancies:

- Controller._cleanTmpVault()

(contracts/core/Controller.sol#345-352)

- Controller.getOtokenIndex(address,uint256,address)

(contracts/core/Controller.sol#626-642)

- Controller.oTokenIndexes (contracts/core/Controller.sol#110)

Medium

Reentrancy in Controller._withdrawLong(Actions.WithdrawArgs)

(contracts/core/Controller.sol#824-845): External calls:

- ControllerLib.withdrawLong(_args,vaults[_args.owner][_args.vaultI

d],_getTmpVault(),tmpVaultOtokenIndex,pool)

(contracts/core/Controller.sol#836-842) State variables written

after the call(s):

- oTokenIndexes[address(0)][0][_args.asset] = tmpVaultOtokenIndex (

contracts/core/Controller.sol#844)Controller.oTokenIndexes

(contracts/core/Controller.sol#110) can be used in cross function

reentrancies:

- Controller._cleanTmpVault()

(contracts/core/Controller.sol#345-352)

- Controller.getOtokenIndex(address,uint256,address)

(contracts/core/Controller.sol#626-642)

- Controller.oTokenIndexes (contracts/core/Controller.sol#110)

Medium

124

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

Reentrancy in Controller._runActions(Actions.ActionArgs[])

(contracts/core/Controller.sol#654-749): External calls:

- _depositLong(Actions._parseDepositArgs(action))

(contracts/core/Controller.sol#721)

- ControllerLib.depositLong(_args,vaults[_args.owner][_args.vaultId

],_getTmpVault(),tmpVaultOtokenIndex,pool,whitelist)

(contracts/core/Controller.sol#805-812)

- OtokenInterface(_args.asset).burnOtoken(_args.from,burnAmount)

(contracts/libs/ControllerLib.sol#138)

- pool.transferToPool(_args.asset,_args.from,_args.amount -

burnAmount) (contracts/libs/ControllerLib.sol#146)

- _withdrawLong(Actions._parseWithdrawArgs(action))

(contracts/core/Controller.sol#726)

- ControllerLib.withdrawLong(_args,vaults[_args.owner][_args.vaultI

d],_getTmpVault(),tmpVaultOtokenIndex,pool)

(contracts/core/Controller.sol#836-842)

- pool.transferToUser(_args.asset,_args.to,_args.amount)

(contracts/libs/ControllerLib.sol#176)

- _depositCollateral(Actions._parseDepositArgs(action))

(contracts/core/Controller.sol#728)

- ControllerLib.depositCollateral(_args,vaults[_args.owner][_args.v

aultId],_getTmpVault(),pool,whitelist)

(contracts/core/Controller.sol#859)

- pool.transferToPool(_args.asset,_args.from,_args.amount)

(contracts/libs/ControllerLib.sol#207)

- _withdrawCollateral(Actions._parseWithdrawArgs(action))

(contracts/core/Controller.sol#730)

- ControllerLib.withdrawCollateral(_args,vaults[_args.owner][_args.

vaultId],pool) (contracts/core/Controller.sol#874)

- pool.transferToUser(_args.asset,_args.to,_args.amount)

(contracts/libs/ControllerLib.sol#224)

- _mintOtoken(Actions._parseMintArgs(action))

(contracts/core/Controller.sol#734)

- ControllerLib.mintOtoken(_args,vaults[_args.owner][_args.vaultId]

,_getTmpVault(),tmpVaultOtokenIndex,pool,whitelist)

(contracts/core/Controller.sol#894-901)

- pool.transferToUser(_args.otoken,_args.to,longOffset)

(contracts/libs/ControllerLib.sol#262)

- OtokenInterface(_args.otoken).mintOtoken(_args.to,_args.amount -

longOffset) (contracts/libs/ControllerLib.sol#269)

- _burnOtoken(Actions._parseBurnArgs(action))

(contracts/core/Controller.sol#736)

- ControllerLib.burnOtoken(_args,vaults[_args.owner][_args.vaultId]

,_getTmpVault(),tmpVaultOtokenIndex)

(contracts/core/Controller.sol#925)

- otoken.burnOtoken(_args.from,_args.amount)

(contracts/libs/ControllerLib.sol#304)

- _redeem(Actions._parseRedeemArgs(action))

(contracts/core/Controller.sol#738)

- ControllerLib.redeem(_args,pool,oracle,calculator,whitelist)

(contracts/core/Controller.sol#937)

- otoken.burnOtoken(msg.sender,_args.amount)

(contracts/libs/ControllerLib.sol#338)

- pool.transferToUser(collateral,_args.receiver,payout)

(contracts/libs/ControllerLib.sol#340)

- _settleVault(Actions._parseSettleVaultArgs(action))

(contracts/core/Controller.sol#740)

- ControllerLib.settleVault(_args,pool,oracle,calculator,vaults[_ar

gs.owner][_args.vaultId]) (contracts/core/Controller.sol#948)

- otoken.burnOtoken(address(pool),vault.longAmounts[i])

(contracts/libs/ControllerLib.sol#393)

- _liquidate(Actions._parseLiquidateArgs(action))

(contracts/core/Controller.sol#742)

- ControllerLib.liquidate(_args,pool,calculator,vaults[_args.owner]

[_args.vaultId]) (contracts/core/Controller.sol#961)

- OtokenInterface(vars.oToken).burnOtoken(msg.sender,_args.amount)

(contracts/libs/ControllerLib.sol#499)

- vars.pool.transferToUser(vault.collateralAssets[0],_args.receiver

,vars.collateralAmount) (contracts/libs/ControllerLib.sol#506)

- vars.pool.transferToPool(vault.collateralAssets[0],msg.sender,var

s.collateralAmount) (contracts/libs/ControllerLib.sol#519)

- vars.pool.transferToUser(vars.oToken,_args.receiver,_args.amount)

(contracts/libs/ControllerLib.sol#525)

- _call(Actions._parseCallArgs(action))

(contracts/core/Controller.sol#744)

- CalleeInterface(_args.callee).callFunction(msg.sender,_args.data)

(contracts/core/Controller.sol#970) State variables written after

the call(s):

- _openVault(Actions._parseOpenVaultArgs(action))

(contracts/core/Controller.sol#719)

- accountVaultCounter[_args.owner] = vaultId (contracts/core/Contro

ller.sol#783)Controller.accountVaultCounter

(contracts/core/Controller.sol#100) can be used in cross function

reentrancies:

- Controller.getAccountVaultCounter(address)

(contracts/core/Controller.sol#516-518)

- _depositLong(Actions._parseDepositArgs(action))

(contracts/core/Controller.sol#721)

- oTokenIndexes[_args.owner][_args.vaultId][_args.asset] =

_args.index (contracts/core/Controller.sol#814)

- oTokenIndexes[address(0)][0][_args.asset] = tmpVaultOtokenIndex (

contracts/core/Controller.sol#816)Controller.oTokenIndexes

(contracts/core/Controller.sol#110) can be used in cross function

reentrancies:

- Controller._cleanTmpVault()

(contracts/core/Controller.sol#345-352)

- Controller.getOtokenIndex(address,uint256,address)

(contracts/core/Controller.sol#626-642)

- Controller.oTokenIndexes (contracts/core/Controller.sol#110)

- _withdrawLong(Actions._parseWithdrawArgs(action))

(contracts/core/Controller.sol#726)

- oTokenIndexes[address(0)][0][_args.asset] = tmpVaultOtokenIndex (

contracts/core/Controller.sol#844)Controller.oTokenIndexes

(contracts/core/Controller.sol#110) can be used in cross function

reentrancies:

- Controller._cleanTmpVault()

(contracts/core/Controller.sol#345-352)

- Controller.getOtokenIndex(address,uint256,address)

(contracts/core/Controller.sol#626-642)

- Controller.oTokenIndexes (contracts/core/Controller.sol#110)

- _mintOtoken(Actions._parseMintArgs(action))

(contracts/core/Controller.sol#734)

- oTokenIndexes[_args.owner][_args.vaultId][_args.otoken] =

_args.index (contracts/core/Controller.sol#903)

- oTokenIndexes[address(0)][0][_args.otoken] = tmpVaultOtokenIndex

(contracts/core/Controller.sol#904)Controller.oTokenIndexes

(contracts/core/Controller.sol#110) can be used in cross function

reentrancies:

- Controller._cleanTmpVault()

(contracts/core/Controller.sol#345-352)

- Controller.getOtokenIndex(address,uint256,address)

(contracts/core/Controller.sol#626-642)

- Controller.oTokenIndexes (contracts/core/Controller.sol#110)

- _burnOtoken(Actions._parseBurnArgs(action))

(contracts/core/Controller.sol#736)

- oTokenIndexes[address(0)][0][_args.otoken] = tmpVaultOtokenIndex

(contracts/core/Controller.sol#928)Controller.oTokenIndexes

(contracts/core/Controller.sol#110) can be used in cross function

reentrancies:

- Controller._cleanTmpVault()

(contracts/core/Controller.sol#345-352)

- Controller.getOtokenIndex(address,uint256,address)

(contracts/core/Controller.sol#626-642)

- Controller.oTokenIndexes (contracts/core/Controller.sol#110)

Medium

125

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

Reentrancy in Controller._mintOtoken(Actions.MintArgs)

(contracts/core/Controller.sol#882-905): External calls:

- ControllerLib.mintOtoken(_args,vaults[_args.owner][_args.vaultId]

,_getTmpVault(),tmpVaultOtokenIndex,pool,whitelist)

(contracts/core/Controller.sol#894-901) State variables written

after the call(s):

- oTokenIndexes[_args.owner][_args.vaultId][_args.otoken] =

_args.index (contracts/core/Controller.sol#903)Controller.oTokenInd

exes (contracts/core/Controller.sol#110) can be used in cross

function reentrancies:

- Controller._cleanTmpVault()

(contracts/core/Controller.sol#345-352)

- Controller.getOtokenIndex(address,uint256,address)

(contracts/core/Controller.sol#626-642)

- Controller.oTokenIndexes (contracts/core/Controller.sol#110)

- oTokenIndexes[address(0)][0][_args.otoken] = tmpVaultOtokenIndex

(contracts/core/Controller.sol#904)Controller.oTokenIndexes

(contracts/core/Controller.sol#110) can be used in cross function

reentrancies:

- Controller._cleanTmpVault()

(contracts/core/Controller.sol#345-352)

- Controller.getOtokenIndex(address,uint256,address)

(contracts/core/Controller.sol#626-642)

- Controller.oTokenIndexes (contracts/core/Controller.sol#110)

Medium

Reentrancy in Controller._burnOtoken(Actions.BurnArgs)

(contracts/core/Controller.sol#912-929): External calls:

- ControllerLib.burnOtoken(_args,vaults[_args.owner][_args.vaultId]

,_getTmpVault(),tmpVaultOtokenIndex)

(contracts/core/Controller.sol#925) State variables written after

the call(s):

- oTokenIndexes[address(0)][0][_args.otoken] = tmpVaultOtokenIndex

(contracts/core/Controller.sol#928)Controller.oTokenIndexes

(contracts/core/Controller.sol#110) can be used in cross function

reentrancies:

- Controller._cleanTmpVault()

(contracts/core/Controller.sol#345-352)

- Controller.getOtokenIndex(address,uint256,address)

(contracts/core/Controller.sol#626-642)

- Controller.oTokenIndexes (contracts/core/Controller.sol#110)

Medium

126

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

ControllerLib.withdrawLong(Actions.WithdrawArgs,MarginVault.Vault,M

arginVault.Vault,uint256,MarginPoolInterface)

(contracts/libs/ControllerLib.sol#162-182) ignores return value by

(expiry,isPut) = OtokenInterface(otoken).getOtokenDetails()

(contracts/libs/ControllerLib.sol#171)

Medium

ControllerLib.depositLong(Actions.DepositArgs,MarginVault.Vault,Mar

ginVault.Vault,uint256,MarginPoolInterface,WhitelistInterface)

(contracts/libs/ControllerLib.sol#109-155) ignores return value by

(strike,expiry,isPut) =

OtokenInterface(_args.asset).getOtokenDetails()

(contracts/libs/ControllerLib.sol#126)

Medium

ControllerLib.liquidate(Actions.LiquidateArgs,MarginPoolInterface,M

arginCalculatorInterface,MarginVault.Vault)

(contracts/libs/ControllerLib.sol#437-553) ignores return value by

(isUnderCollatAfter,totalDebtAfter) =

calculator.isLiquidatable(vault)

(contracts/libs/ControllerLib.sol#530)

Medium

ChainLinkPricer.getPrice()

(contracts/pricers/ChainlinkPricer.sol#83-88) ignores return value

by (answer) = aggregator.latestRoundData()

(contracts/pricers/ChainlinkPricer.sol#84)

Medium

YearnPricer.setExpiryPriceInOracle(uint256)

(contracts/pricers/YearnPricer.sol#60-65) ignores return value by

(underlyingPriceExpiry) =

oracle.getExpiryPrice(address(underlying),_expiryTimestamp)

(contracts/pricers/YearnPricer.sol#61)

Medium

Controller.getVaultExtended(address,uint256)

(contracts/core/Controller.sol#556-595) ignores return value by

(strikePrice,expiryTimestamp,isPut) = OtokenInterface(vault.oTokens

[i_scope_0]).getOtokenDetails()

(contracts/core/Controller.sol#580-581)

Medium

ChainLinkPricer.setExpiryPriceInOracle(uint256,uint80)

(contracts/pricers/ChainlinkPricer.sol#70-76) ignores return value

by (price,roundTimestamp) = aggregator.getRoundData(_roundId)

(contracts/pricers/ChainlinkPricer.sol#71)

Medium

127

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

CompoundPricer.setExpiryPriceInOracle(uint256)

(contracts/pricers/CompoundPricer.sol#58-63) ignores return value

by (underlyingPriceExpiry) =

oracle.getExpiryPrice(address(underlying),_expiryTimestamp)

(contracts/pricers/CompoundPricer.sol#59)

Medium

ControllerLib.mintOtoken(Actions.MintArgs,MarginVault.Vault,MarginV

ault.Vault,uint256,MarginPoolInterface,WhitelistInterface)

(contracts/libs/ControllerLib.sol#234-278) ignores return value by

(strike,expiry,isPut) =

OtokenInterface(_args.otoken).getOtokenDetails()

(contracts/libs/ControllerLib.sol#246)

Medium

WstethPricer.setExpiryPriceInOracle(uint256)

(contracts/pricers/WstethPricer.sol#71-76) ignores return value by

(underlyingPriceExpiry) =

oracle.getExpiryPrice(underlying,_expiryTimestamp)

(contracts/pricers/WstethPricer.sol#72)

Medium

ControllerLib.burnOtoken(Actions.BurnArgs,MarginVault.Vault,MarginV

ault.Vault,uint256) (contracts/libs/ControllerLib.sol#285-310)

ignores return value by (expiry,isPut) =

OtokenInterface(otoken).getOtokenDetails()

(contracts/libs/ControllerLib.sol#295)

Medium

MarginCalculator._getVaultDetails(MarginVault.Vault)

(contracts/core/MarginCalculator.sol#898-1033) ignores return value

by (strikePrice,expiryTimestamp,isPut) = OtokenInterface(_vault.oTo

kens[i_scope_0]).getOtokenDetails()

(contracts/core/MarginCalculator.sol#964-965)

Medium

ControllerLib.redeem(Actions.RedeemArgs,MarginPoolInterface,OracleI

nterface,MarginCalculatorInterface,WhitelistInterface)

(contracts/libs/ControllerLib.sol#317-343) ignores return value by

(collateral,underlying,strike,expiry) = otoken.getOtokenDetails()

(contracts/libs/ControllerLib.sol#329)

Medium

Controller.isSettlementAllowed(address)

(contracts/core/Controller.sol#488-492) ignores return value by

(collateral,underlying,strike,expiry) =

OtokenInterface(_otoken).getOtokenDetails()

(contracts/core/Controller.sol#489-490)

Medium

128

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

Controller.operate(Actions.ActionArgs[])

(contracts/core/Controller.sol#360-390) ignores return value by

(isValidVault) = calculator.getExcessCollateral(_getTmpVault())

(contracts/core/Controller.sol#378)

Medium

ChainLinkPricer.getHistoricalPrice(uint80)

(contracts/pricers/ChainlinkPricer.sol#95-98) ignores return value

by (price,roundTimestamp) = aggregator.getRoundData(_roundId)

(contracts/pricers/ChainlinkPricer.sol#96)

Medium

PayableProxyController.operate(Actions.ActionArgs[],address) (contr

acts/external/proxies/PayableProxyController.sol#51-85) ignores

return value by controller.operate(_actions)

(contracts/external/proxies/PayableProxyController.sol#75)

Medium

ControllerLib.settleVault(Actions.SettleVaultArgs,MarginPoolInterfa

ce,OracleInterface,MarginCalculatorInterface,MarginVault.Vault)

(contracts/libs/ControllerLib.sol#350-411) ignores return value by

(collateral,underlying,strike,None,expiry,isPut) =

otoken.getOtokenDetails() (contracts/libs/ControllerLib.sol#385)

Medium

Controller.isLiquidatable(address,uint256)

(contracts/core/Controller.sol#456-471) ignores return value by

(isUnderCollat,totalDebt,payoutDebt,nakedDebt,dust) =

ControllerLib.isLiquidatable(vault,calculator)

(contracts/core/Controller.sol#468-469)

Medium

End of table for GammaProtocol

core-v4

Slither results for core-v4

Finding Impact

Gmx2Hedger._sendCollateral(uint256)

(contracts/core/hedgers/Gmx2Hedger.sol#659-676) uses arbitrary from

in transferFrom: collateralToken.safeTransferFrom(hedgedPool,addres

s(this),collateralAmount)

(contracts/core/hedgers/Gmx2Hedger.sol#662-666)

High

TradeExecutor.executeActions(TradeExecutor.LocalVars,address)

(contracts/core/TradeExecutor.sol#318-458) uses arbitrary from in

transferFrom: vars.collateralAsset.safeTransferFrom(poolAddress,add

ress(this),uint256(vars.traderCashflow))

(contracts/core/TradeExecutor.sol#360-364)

High

129

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

HedgedPool._redeemShares(address)

(contracts/core/HedgedPool.sol#333-339) ignores return value by

this.transfer(lpAddress,sharesAmount)

(contracts/core/HedgedPool.sol#337)

High

HedgedPool.processOrder(ITradeExecutor.Order,address[],uint256,int2

56,int256) (contracts/core/HedgedPool.sol#484-526) uses a Boolean

constant improperly: -notionalExposure[order.underlying][false] +=

exposureDiffCalls (contracts/core/HedgedPool.sol#504)

Medium

HedgedPool.getCashBuffer() (contracts/core/HedgedPool.sol#402-443)

uses a Boolean constant improperly: -exposurePuts =

notionalExposure[underlyingAsset][true]

(contracts/core/HedgedPool.sol#409)

Medium

HedgedPool.getCashBuffer() (contracts/core/HedgedPool.sol#402-443)

uses a Boolean constant improperly: -exposureCalls =

notionalExposure[underlyingAsset][false]

(contracts/core/HedgedPool.sol#408)

Medium

HedgedPool.configUnderlying(address,bool,uint256,uint256,uint256,ui

nt256,uint256) (contracts/core/HedgedPool.sol#707-754) uses a

Boolean constant improperly: -spotShockPercent[_underlying][false]

= _spotShockPercentCalls (contracts/core/HedgedPool.sol#740)

Medium

HedgedPool.getCashBuffer() (contracts/core/HedgedPool.sol#402-443)

uses a Boolean constant improperly: -cashBufferPuts =

(((((uint256(- exposurePuts) * underlyingPrice) / (10 ** 8)) *

spotShockPercent[underlyingAsset][true]) / 100 /

CASH_BUFFER_LEVERAGE) * (10 ** numDecimals)) / (10 ** 8)

(contracts/core/HedgedPool.sol#431-436)

Medium

HedgedPool.processOrder(ITradeExecutor.Order,address[],uint256,int2

56,int256) (contracts/core/HedgedPool.sol#484-526) uses a Boolean

constant improperly: -notionalExposure[order.underlying][true] +=

exposureDiffPuts (contracts/core/HedgedPool.sol#505)

Medium

HedgedPool.settleAll() (contracts/core/HedgedPool.sol#160-229) uses

a Boolean constant improperly: -notionalExposure[underlying][true]

+= Math.max(0,exposureAfterPuts - exposureBeforePuts)

(contracts/core/HedgedPool.sol#200-203)

Medium

130

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

HedgedPool.getCashBuffer() (contracts/core/HedgedPool.sol#402-443)

uses a Boolean constant improperly: -cashBufferCalls =

(((((uint256(- exposureCalls) * underlyingPrice) / (10 ** 8)) *

spotShockPercent[underlyingAsset][false]) / 100 /

CASH_BUFFER_LEVERAGE) * (10 ** numDecimals)) / (10 ** 8)

(contracts/core/HedgedPool.sol#418-423)

Medium

HedgedPool.settleAll() (contracts/core/HedgedPool.sol#160-229) uses

a Boolean constant improperly: -notionalExposure[underlying][false]

+= Math.max(0,exposureAfterCalls - exposureBeforeCalls)

(contracts/core/HedgedPool.sol#196-199)

Medium

HedgedPool.configUnderlying(address,bool,uint256,uint256,uint256,ui

nt256,uint256) (contracts/core/HedgedPool.sol#707-754) uses a

Boolean constant improperly: -spotShockPercent[_underlying][true] =

_spotShockPercentPuts (contracts/core/HedgedPool.sol#741)

Medium

HedgedPool.getCashBuffer() (contracts/core/HedgedPool.sol#402-443)

performs a multiplication on the result of a division:

- cashBufferCalls = (((((uint256(- exposureCalls) * underlyingPrice)

/ (10 ** 8)) * spotShockPercent[underlyingAsset][false]) / 100 /

CASH_BUFFER_LEVERAGE) * (10 ** numDecimals)) / (10 ** 8)

(contracts/core/HedgedPool.sol#418-423)

Medium

HedgedPool.getCashBuffer() (contracts/core/HedgedPool.sol#402-443)

performs a multiplication on the result of a division:

- cashBufferPuts = (((((uint256(- exposurePuts) * underlyingPrice)

/ (10 ** 8)) * spotShockPercent[underlyingAsset][true]) / 100 /

CASH_BUFFER_LEVERAGE) * (10 ** numDecimals)) / (10 ** 8)

(contracts/core/HedgedPool.sol#431-436)

Medium

Gmx2Hedger (contracts/core/hedgers/Gmx2Hedger.sol#17-1116) has

incorrect ERC20 function

interface:Gmx2Hedger.transfer(address,uint256)

(contracts/core/hedgers/Gmx2Hedger.sol#1109-1111)

Medium

HedgedPool._syncVaultMargin(uint256,OpynLib.MARGIN_UPDATE_TYPE)

(contracts/core/HedgedPool.sol#669-692) uses a dangerous strict

equality:

- lastMarginUpdate[vaultId] == block.timestamp

(contracts/core/HedgedPool.sol#674)

Medium

131

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

Reentrancy in HedgedPool._syncVaultMargin(uint256,OpynLib.MARGIN_UP

DATE_TYPE) (contracts/core/HedgedPool.sol#669-692): External calls:

- collateralChange = OpynLib.syncVaultMargin(controller,calculator,

address(collateralToken),vaultId,updateType,getCollateralBalance(),

MARGIN_HIGH_RANGE_PERCENT,MARGIN_LOW_RANGE_PERCENT)

(contracts/core/HedgedPool.sol#676-685) State variables written

after the call(s):

- lastMarginUpdate[vaultId] = block.timestamp (contracts/core/Hedge

dPool.sol#688)HedgedPoolStorageV1.lastMarginUpdate

(contracts/core/HedgedPoolStorage.sol#54) can be used in cross

function reentrancies:

- HedgedPool._syncVaultMargin(uint256,OpynLib.MARGIN_UPDATE_TYPE)

(contracts/core/HedgedPool.sol#669-692)

Medium

Reentrancy in HedgedPool.setHedger(address,address)

(contracts/core/HedgedPool.sol#623-633): External calls:

- collateralToken.approve(address(hedgers[underlying]),0)

(contracts/core/HedgedPool.sol#626) State variables written after

the call(s):

- hedgers[underlying] = hedger (contracts/core/HedgedPool.sol#629)He

dgedPoolStorageV1.hedgers (contracts/core/HedgedPoolStorage.sol#31)

can be used in cross function reentrancies:

- HedgedPoolStorageV1.hedgers

(contracts/core/HedgedPoolStorage.sol#31)

- HedgedPool.setHedger(address,address)

(contracts/core/HedgedPool.sol#623-633)

- HedgedPool.syncMargin(address[])

(contracts/core/HedgedPool.sol#636-666)

Medium

132

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

Reentrancy in HedgedPool._refreshConfigInternal()

(contracts/core/HedgedPool.sol#812-840): External calls:

- collateralToken.approve(marginPool,0)

(contracts/core/HedgedPool.sol#815)

- collateralToken.approve(feeCollector,0)

(contracts/core/HedgedPool.sol#818)

- collateralToken.approve(tradeExecutor,0)

(contracts/core/HedgedPool.sol#821)

- IController(controller).setOperator(tradeExecutor,false)

(contracts/core/HedgedPool.sol#822) State variables written after

the call(s):

- controller = addressBook.getController() (contracts/core/HedgedPo

ol.sol#825)HedgedPoolStorageV1.controller

(contracts/core/HedgedPoolStorage.sol#89) can be used in cross

function reentrancies:

- HedgedPool._refreshConfigInternal()

(contracts/core/HedgedPool.sol#812-840)

- HedgedPool._syncVaultMargin(uint256,OpynLib.MARGIN_UPDATE_TYPE)

(contracts/core/HedgedPool.sol#669-692)

- HedgedPool.settleAll() (contracts/core/HedgedPool.sol#160-229)

- feeCollector = addressBook.getFeeCollector() (contracts/core/Hedg

edPool.sol#832)HedgedPoolStorageV1.feeCollector

(contracts/core/HedgedPoolStorage.sol#96) can be used in cross

function reentrancies:

- HedgedPool._refreshConfigInternal()

(contracts/core/HedgedPool.sol#812-840)

- marginPool = addressBook.getMarginPool() (contracts/core/HedgedPo

ol.sol#828)HedgedPoolStorageV1.marginPool

(contracts/core/HedgedPoolStorage.sol#94) can be used in cross

function reentrancies:

- HedgedPool._refreshConfigInternal()

(contracts/core/HedgedPool.sol#812-840)

- tradeExecutor = addressBook.getTradeExecutor() (contracts/core/He

dgedPool.sol#833)HedgedPoolStorageV1.tradeExecutor

(contracts/core/HedgedPoolStorage.sol#97) can be used in cross

function reentrancies:

- HedgedPool._refreshConfigInternal()

(contracts/core/HedgedPool.sol#812-840)

- HedgedPool.configUnderlying(address,bool,uint256,uint256,uint256,

uint256,uint256) (contracts/core/HedgedPool.sol#707-754)

- HedgedPool.settleAll() (contracts/core/HedgedPool.sol#160-229)

- HedgedPool.syncMargin(address[])

(contracts/core/HedgedPool.sol#636-666)

Medium

133

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

Reentrancy in HedgedPool._closeRound(uint256)

(contracts/core/HedgedPool.sol#259-296): External calls:

- sharesDiff -= int256(ILpManager(lpManager).closeWithdrawalRound(p

ricePerShare)) (contracts/core/HedgedPool.sol#269-271) State

variables written after the call(s):

- withdrawalRoundEnd += 604800 (contracts/core/HedgedPool.sol#273)H

edgedPoolStorageV1.withdrawalRoundEnd

(contracts/core/HedgedPoolStorage.sol#37) can be used in cross

function reentrancies:

- HedgedPool.__HedgedPool_init(address,address,address,string,strin

g) (contracts/core/HedgedPool.sol#104-141)

- HedgedPool._closeRound(uint256)

(contracts/core/HedgedPool.sol#259-296)

- HedgedPoolStorageV1.withdrawalRoundEnd

(contracts/core/HedgedPoolStorage.sol#37)

Medium

Reentrancy in HedgedPool._closeRound(uint256)

(contracts/core/HedgedPool.sol#259-296): External calls:

- sharesDiff -= int256(ILpManager(lpManager).closeWithdrawalRound(p

ricePerShare)) (contracts/core/HedgedPool.sol#269-271)

- sharesDiff += int256(ILpManager(lpManager).closeDepositRound(pric

ePerShare)) (contracts/core/HedgedPool.sol#279-281) State variables

written after the call(s):

- depositRoundEnd += 86400 (contracts/core/HedgedPool.sol#283)Hedge

dPoolStorageV1.depositRoundEnd

(contracts/core/HedgedPoolStorage.sol#40) can be used in cross

function reentrancies:

- HedgedPool.__HedgedPool_init(address,address,address,string,strin

g) (contracts/core/HedgedPool.sol#104-141)

- HedgedPool._closeRound(uint256)

(contracts/core/HedgedPool.sol#259-296)

- HedgedPoolStorageV1.depositRoundEnd

(contracts/core/HedgedPoolStorage.sol#40)

Medium

134

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

Reentrancy in HedgedPool.settleAll()

(contracts/core/HedgedPool.sol#160-229): External calls:

- OpynLib.settle(controller,vaultId)

(contracts/core/HedgedPool.sol#185) State variables written after

the call(s):

- lastSettledExpiry = expiry (contracts/core/HedgedPool.sol#217)Hed

gedPoolStorageV1.lastSettledExpiry

(contracts/core/HedgedPoolStorage.sol#43) can be used in cross

function reentrancies:

- HedgedPool.__HedgedPool_init(address,address,address,string,strin

g) (contracts/core/HedgedPool.sol#104-141)

- HedgedPool._closeRound(uint256)

(contracts/core/HedgedPool.sol#259-296)

- HedgedPoolStorageV1.lastSettledExpiry

(contracts/core/HedgedPoolStorage.sol#43)

- HedgedPool.settleAll() (contracts/core/HedgedPool.sol#160-229)

- notionalExposure[underlying][false] +=

Math.max(0,exposureAfterCalls - exposureBeforeCalls) (contracts/cor

e/HedgedPool.sol#196-199)HedgedPoolStorageV1.notionalExposure

(contracts/core/HedgedPoolStorage.sol#103) can be used in cross

function reentrancies:

- HedgedPool.getCashBuffer()

(contracts/core/HedgedPool.sol#402-443)

- HedgedPoolStorageV1.notionalExposure

(contracts/core/HedgedPoolStorage.sol#103)

- HedgedPool.settleAll() (contracts/core/HedgedPool.sol#160-229)

- notionalExposure[underlying][true] +=

Math.max(0,exposureAfterPuts - exposureBeforePuts) (contracts/core/

HedgedPool.sol#200-203)HedgedPoolStorageV1.notionalExposure

(contracts/core/HedgedPoolStorage.sol#103) can be used in cross

function reentrancies:

- HedgedPool.getCashBuffer()

(contracts/core/HedgedPool.sol#402-443)

- HedgedPoolStorageV1.notionalExposure

(contracts/core/HedgedPoolStorage.sol#103)

- HedgedPool.settleAll() (contracts/core/HedgedPool.sol#160-229)

Medium

HedgedPool._closeRound(uint256).sharesDiff

(contracts/core/HedgedPool.sol#266) is a local variable never

initialized

Medium

135

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

Gmx2Hedger.hedge(int256,uint256,uint256).currentLong

(contracts/core/hedgers/Gmx2Hedger.sol#291) is a local variable

never initialized

Medium

Gmx2Hedger._createOrderParamAddresses().swapPath

(contracts/core/hedgers/Gmx2Hedger.sol#563) is a local variable

never initialized

Medium

HedgedPool.getCashBuffer().underlyingPrice

(contracts/core/HedgedPool.sol#407) is a local variable never

initialized

Medium

Gmx2Hedger._changePosition(uint256,uint256,uint256,uint256,MarketUt

ils.MarketPrices).initialCollateralDelta

(contracts/core/hedgers/Gmx2Hedger.sol#729) is a local variable

never initialized

Medium

TradeExecutor.executeOrder(bytes32,address,ITradeExecutor.ExecuteOr

derLeg[]).vars (contracts/core/TradeExecutor.sol#469) is a local

variable never initialized

Medium

Gmx2Hedger.hedge(int256,uint256,uint256).currentShort

(contracts/core/hedgers/Gmx2Hedger.sol#292) is a local variable

never initialized

Medium

FeeCollector.collectFee(address,uint256,address).referrerAmount

(contracts/core/FeeCollector.sol#55) is a local variable never

initialized

Medium

Gmx2Hedger._orderParamAddresses().swapPath

(contracts/core/hedgers/Gmx2Hedger.sol#580) is a local variable

never initialized

Medium

HedgedPool.getCashBuffer().cashBufferPuts

(contracts/core/HedgedPool.sol#412) is a local variable never

initialized

Medium

Gmx2Hedger.hedge(int256,uint256,uint256).targetShort

(contracts/core/hedgers/Gmx2Hedger.sol#294) is a local variable

never initialized

Medium

Gmx2Hedger._syncDelta().totalSizeInTokens

(contracts/core/hedgers/Gmx2Hedger.sol#465) is a local variable

never initialized

Medium

Gmx2Hedger.hedge(int256,uint256,uint256).targetLong

(contracts/core/hedgers/Gmx2Hedger.sol#293) is a local variable

never initialized

Medium

136

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

Gmx2Hedger._changePosition(uint256,uint256,uint256,uint256,MarketUt

ils.MarketPrices).initialCollateralDelta_scope_0

(contracts/core/hedgers/Gmx2Hedger.sol#766) is a local variable

never initialized

Medium

Gmx2Hedger._changePosition(uint256,uint256,uint256,uint256,MarketUt

ils.MarketPrices).vars (contracts/core/hedgers/Gmx2Hedger.sol#690)

is a local variable never initialized

Medium

HedgedPool.getCashBuffer().cashBufferCalls

(contracts/core/HedgedPool.sol#411) is a local variable never

initialized

Medium

HedgedPool.configUnderlying(address,bool,uint256,uint256,uint256,ui

nt256,uint256) (contracts/core/HedgedPool.sol#707-754) ignores

return value by underlyingTokens.remove(_underlying)

(contracts/core/HedgedPool.sol#744)

Medium

HedgedPool.withdrawCash() (contracts/core/HedgedPool.sol#361-367)

ignores return value by (cashAmount) =

ILpManager(lpManager).withdrawCash(msg.sender)

(contracts/core/HedgedPool.sol#362)

Medium

TradeExecutor.submitOrder(ITradeExecutor.SubmitOrderParams,address,

uint256,uint256,bool) (contracts/core/TradeExecutor.sol#168-235)

ignores return value by orderKeys.add(orderKey)

(contracts/core/TradeExecutor.sol#232)

Medium

TradeExecutor.executeActions(TradeExecutor.LocalVars,address)

(contracts/core/TradeExecutor.sol#318-458) ignores return value by

vars.controller.operate(actions1)

(contracts/core/TradeExecutor.sol#455)

Medium

Gmx2Hedger._getPositinPnlCollateral(Position.Props,MarketUtils.Mark

etPrices) (contracts/core/hedgers/Gmx2Hedger.sol#529-552) ignores

return value by (positionPnlUsd) = IReader(reader).getPositionPnlUs

d(IDataStore(dataStore),marketProps,prices,key,0)

(contracts/core/hedgers/Gmx2Hedger.sol#538-544)

Medium

HedgedPool._refreshConfigInternal()

(contracts/core/HedgedPool.sol#812-840) ignores return value by

collateralToken.approve(feeCollector,type()(uint256).max)

(contracts/core/HedgedPool.sol#838)

Medium

137

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

HedgedPool.configUnderlying(address,bool,uint256,uint256,uint256,ui

nt256,uint256) (contracts/core/HedgedPool.sol#707-754) ignores

return value by ITradeExecutor(tradeExecutor).openMarginVault(_unde

rlying,0,address(0)) (contracts/core/HedgedPool.sol#723-727)

Medium

TradeExecutor.executeActions(TradeExecutor.LocalVars,address)

(contracts/core/TradeExecutor.sol#318-458) ignores return value by

IERC20(vars.oTokens[i]).approve(vars.marginPoolAddress,uint256(vars

.order.legs[i].amount)) (contracts/core/TradeExecutor.sol#407-410)

Medium

HedgedPool.settleAll() (contracts/core/HedgedPool.sol#160-229)

ignores return value by activeOTokens.remove(oTokensByExpiry[underl

ying][expiry][io]) (contracts/core/HedgedPool.sol#211-213)

Medium

HedgedPool._refreshConfigInternal()

(contracts/core/HedgedPool.sol#812-840) ignores return value by

collateralToken.approve(tradeExecutor,0)

(contracts/core/HedgedPool.sol#821)

Medium

TradeExecutor.openMarginVault(address,uint256,address)

(contracts/core/TradeExecutor.sol#644-676) ignores return value by

controller.operate(actions) (contracts/core/TradeExecutor.sol#672)

Medium

TradeExecutor.deleteOrder(bytes32,address)

(contracts/core/TradeExecutor.sol#275-279) ignores return value by

orderKeys.remove(orderKey) (contracts/core/TradeExecutor.sol#277)

Medium

HedgedPool.processOToken(address,uint256,uint256,address,uint256)

(contracts/core/HedgedPool.sol#558-616) ignores return value by

activeOTokens.add(oToken) (contracts/core/HedgedPool.sol#614)

Medium

TradeExecutor.deleteOrder(bytes32,address)

(contracts/core/TradeExecutor.sol#275-279) ignores return value by

accountOrderKeys[account].remove(orderKey)

(contracts/core/TradeExecutor.sol#278)

Medium

Gmx2Hedger._sendCollateral(uint256)

(contracts/core/hedgers/Gmx2Hedger.sol#659-676) ignores return

value by IERC20(address(collateralToken)).approve(IExchangeRouter(e

xchangeRouter).router(),collateralAmount)

(contracts/core/hedgers/Gmx2Hedger.sol#667-670)

Medium

HedgedPool._refreshConfigInternal()

(contracts/core/HedgedPool.sol#812-840) ignores return value by

collateralToken.approve(marginPool,0)

(contracts/core/HedgedPool.sol#815)

Medium

138

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

HedgedPool.balanceOf(address)

(contracts/core/HedgedPool.sol#453-461) ignores return value by

(sharesRedeemable) = ILpManager(lpManager).getDepositStatus(address

(this),account) (contracts/core/HedgedPool.sol#456-459)

Medium

TradeExecutor._openMarginVault(address,address)

(contracts/core/TradeExecutor.sol#678-706) ignores return value by

controller.operate(actions) (contracts/core/TradeExecutor.sol#699)

Medium

TradeExecutor.submitOrder(ITradeExecutor.SubmitOrderParams,address,

uint256,uint256,bool) (contracts/core/TradeExecutor.sol#168-235)

ignores return value by controller.operate(actions)

(contracts/core/TradeExecutor.sol#215)

Medium

HedgedPool.configUnderlying(address,bool,uint256,uint256,uint256,ui

nt256,uint256) (contracts/core/HedgedPool.sol#707-754) ignores

return value by underlyingTokens.add(_underlying)

(contracts/core/HedgedPool.sol#721)

Medium

TradeExecutor.executeActions(TradeExecutor.LocalVars,address)

(contracts/core/TradeExecutor.sol#318-458) ignores return value by

vars.controller.operate(actions2)

(contracts/core/TradeExecutor.sol#456)

Medium

HedgedPool._refreshConfigInternal()

(contracts/core/HedgedPool.sol#812-840) ignores return value by

collateralToken.approve(feeCollector,0)

(contracts/core/HedgedPool.sol#818)

Medium

HedgedPool.settleAll() (contracts/core/HedgedPool.sol#160-229)

ignores return value by OpynLib.settle(controller,vaultId)

(contracts/core/HedgedPool.sol#185)

Medium

Gmx2Hedger._calculateAdjustedExecutionPrice(Position.Props,MarketUt

ils.MarketPrices,bool,uint256,uint256,uint256,Order.OrderType)

(contracts/core/hedgers/Gmx2Hedger.sol#985-1021) ignores return

value by (executionPrice) = IGmxUtils(gmxUtils).getExecutionPrice(u

pdateOrderParams,prices.indexTokenPrice)

(contracts/core/hedgers/Gmx2Hedger.sol#1015-1018)

Medium

HedgedPool.setHedger(address,address)

(contracts/core/HedgedPool.sol#623-633) ignores return value by

collateralToken.approve(address(hedgers[underlying]),0)

(contracts/core/HedgedPool.sol#626)

Medium

139

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

HedgedPool._refreshConfigInternal()

(contracts/core/HedgedPool.sol#812-840) ignores return value by

collateralToken.approve(marginPool,type()(uint256).max)

(contracts/core/HedgedPool.sol#837)

Medium

TradeExecutor.executeActions(TradeExecutor.LocalVars,address)

(contracts/core/TradeExecutor.sol#318-458) ignores return value by

IERC20(vars.oTokens[i]).approve(vars.marginPoolAddress,uint256(-

vars.order.legs[i].amount))

(contracts/core/TradeExecutor.sol#436-439)

Medium

TradeExecutor.submitOrder(ITradeExecutor.SubmitOrderParams,address,

uint256,uint256,bool) (contracts/core/TradeExecutor.sol#168-235)

ignores return value by accountOrderKeys[msg.sender].add(orderKey)

(contracts/core/TradeExecutor.sol#233)

Medium

TradeExecutor.executeActions(TradeExecutor.LocalVars,address)

(contracts/core/TradeExecutor.sol#318-458) ignores return value by

vars.controller.operate(actions3)

(contracts/core/TradeExecutor.sol#457)

Medium

HedgedPool.setHedger(address,address)

(contracts/core/HedgedPool.sol#623-633) ignores return value by

collateralToken.approve(hedger,type()(uint256).max)

(contracts/core/HedgedPool.sol#630)

Medium

HedgedPool._refreshConfigInternal()

(contracts/core/HedgedPool.sol#812-840) ignores return value by

collateralToken.approve(tradeExecutor,type()(uint256).max)

(contracts/core/HedgedPool.sol#839)

Medium

HedgedPool.updateSeriesPerExpirationLimit(uint256)

(contracts/core/HedgedPool.sol#551-555) should emit an event for:

- seriesPerExpirationLimit = _seriesPerExpirationLimit

(contracts/core/HedgedPool.sol#554)

Low

Gmx2Hedger.__Gmx2Hedger_init(address,address,address,address,addres

s,uint256)._hedgedPool (contracts/core/hedgers/Gmx2Hedger.sol#109)

lacks a zero-check on :

- hedgedPool = _hedgedPool

(contracts/core/hedgers/Gmx2Hedger.sol#121)

Low

Gmx2Hedger.transfer(address,uint256).to

(contracts/core/hedgers/Gmx2Hedger.sol#1109) lacks a zero-check on :

- address(to).transfer(amount)

(contracts/core/hedgers/Gmx2Hedger.sol#1110)

Low

140

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

Gmx2Hedger.__Gmx2Hedger_init(address,address,address,address,addres

s,uint256)._market (contracts/core/hedgers/Gmx2Hedger.sol#112)

lacks a zero-check on :

- market = _market (contracts/core/hedgers/Gmx2Hedger.sol#116)

Low

HedgedPool.settleAll() (contracts/core/HedgedPool.sol#160-229) has

external calls inside a loop:

(exposureAfterCalls,exposureAfterPuts) = IController(controller).ge

tVaultExposure(address(this),vaultId)

(contracts/core/HedgedPool.sol#187-193)

Low

Gmx2Hedger._getPositinPnlCollateral(Position.Props,MarketUtils.Mark

etPrices) (contracts/core/hedgers/Gmx2Hedger.sol#529-552) has

external calls inside a loop: (positionPnlUsd) = IReader(reader).ge

tPositionPnlUsd(IDataStore(dataStore),marketProps,prices,key,0)

(contracts/core/hedgers/Gmx2Hedger.sol#538-544)

Low

HedgedPool.getCollateralBalance()

(contracts/core/HedgedPool.sol#396-400) has external calls inside a

loop: collateralToken.balanceOf(address(this)) -

ILpManager(lpManager).getCashLocked(address(this),true)

(contracts/core/HedgedPool.sol#397-399)

Low

HedgedPool.syncMargin(address[])

(contracts/core/HedgedPool.sol#636-666) has external calls inside a

loop: vaultId = ITradeExecutor(tradeExecutor).marginVaults(address(

this),underlyingTokens.at(i),0)

(contracts/core/HedgedPool.sol#645-649)

Low

TradeExecutor.executeActions(TradeExecutor.LocalVars,address)

(contracts/core/TradeExecutor.sol#318-458) has external calls

inside a loop: IERC20(vars.oTokens[i]).approve(vars.marginPoolAddre

ss,uint256(- vars.order.legs[i].amount))

(contracts/core/TradeExecutor.sol#436-439)

Low

HedgedPool.syncMargin(address[])

(contracts/core/HedgedPool.sol#636-666) has external calls inside a

loop: collateralMoved +=

Math.abs(IHedger(hedgers[underlying[i]]).sync())

(contracts/core/HedgedPool.sol#655)

Low

HedgedPool.getCashBuffer() (contracts/core/HedgedPool.sol#402-443)

has external calls inside a loop: underlyingPrice =

IOracle(oracle).getPrice(underlyingAsset)

(contracts/core/HedgedPool.sol#429)

Low

141

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

TradeExecutor.executeActions(TradeExecutor.LocalVars,address)

(contracts/core/TradeExecutor.sol#318-458) has external calls

inside a loop: IERC20(vars.oTokens[i]).approve(vars.marginPoolAddre

ss,uint256(vars.order.legs[i].amount))

(contracts/core/TradeExecutor.sol#407-410)

Low

HedgedPool.getCashBuffer() (contracts/core/HedgedPool.sol#402-443)

has external calls inside a loop: underlyingPrice =

IOracle(oracle).getPrice(underlyingAsset)

(contracts/core/HedgedPool.sol#417)

Low

TradeExecutor.executeOrder(bytes32,address,ITradeExecutor.ExecuteOr

derLeg[]) (contracts/core/TradeExecutor.sol#460-623) has external

calls inside a loop: vars.poolMargin += (vars.calculator.getNakedMa

rginRequired(vars.order.underlying,address(vars.strikeAsset),addres

s(vars.collateralAsset),uint256(leg.amount),leg.strike,vars.underly

ingPrice,leg.expiration,vars.collateralDecimals,leg.isPut) *

MARGIN_BUFFER_PERCENT) / 100

(contracts/core/TradeExecutor.sol#519-531)

Low

HedgedPool.settleAll() (contracts/core/HedgedPool.sol#160-229) has

external calls inside a loop:

(exposureBeforeCalls,exposureBeforePuts) = IController(controller).

getVaultExposure(address(this),vaultId)

(contracts/core/HedgedPool.sol#177-183)

Low

HedgedPool.settleAll() (contracts/core/HedgedPool.sol#160-229) has

external calls inside a loop: vaultId = ITradeExecutor(tradeExecuto

r).marginVaults(address(this),underlying,0)

(contracts/core/HedgedPool.sol#172-176)

Low

142

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

Reentrancy in HedgedPool._refreshConfigInternal()

(contracts/core/HedgedPool.sol#812-840): External calls:

- collateralToken.approve(marginPool,0)

(contracts/core/HedgedPool.sol#815)

- collateralToken.approve(feeCollector,0)

(contracts/core/HedgedPool.sol#818)

- collateralToken.approve(tradeExecutor,0)

(contracts/core/HedgedPool.sol#821)

- IController(controller).setOperator(tradeExecutor,false)

(contracts/core/HedgedPool.sol#822) State variables written after

the call(s):

- calculator = addressBook.getMarginCalculator()

(contracts/core/HedgedPool.sol#826)

- lpManager = addressBook.getLpManager()

(contracts/core/HedgedPool.sol#831)

- oTokenFactory = addressBook.getOtokenFactory()

(contracts/core/HedgedPool.sol#829)

- oracle = addressBook.getOracle()

(contracts/core/HedgedPool.sol#827)

- orderUtil = addressBook.getOrderUtil()

(contracts/core/HedgedPool.sol#830)

Low

Reentrancy in HedgedPool._closeRound(uint256)

(contracts/core/HedgedPool.sol#259-296): External calls:

- sharesDiff -= int256(ILpManager(lpManager).closeWithdrawalRound(p

ricePerShare)) (contracts/core/HedgedPool.sol#269-271) State

variables written after the call(s):

- pricePerShareCached = pricePerShare

(contracts/core/HedgedPool.sol#275)

Low

Reentrancy in TradeExecutor._openMarginVault(address,address)

(contracts/core/TradeExecutor.sol#678-706): External calls:

- controller.operate(actions)

(contracts/core/TradeExecutor.sol#699) State variables written

after the call(s):

- marginVaults[_owner][_underlyingAsset].push(vaultId)

(contracts/core/TradeExecutor.sol#701)

Low

143

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

Reentrancy in TradeExecutor.submitOrder(ITradeExecutor.SubmitOrderP

arams,address,uint256,uint256,bool)

(contracts/core/TradeExecutor.sol#168-235): External calls:

- traderVaultId = _openMarginVault(msg.sender,params.underlying)

(contracts/core/TradeExecutor.sol#189)

- controller.operate(actions)

(contracts/core/TradeExecutor.sol#699)

- IERC20(collateralAsset).safeTransferFrom(msg.sender,address(this)

,traderDeposit) (contracts/core/TradeExecutor.sol#193-197)

- IERC20(collateralAsset).safeApprove(addressBook.getMarginPool(),u

int256(traderDeposit)) (contracts/core/TradeExecutor.sol#198-201)

- controller.operate(actions)

(contracts/core/TradeExecutor.sol#215) State variables written

after the call(s):

- orderKey = getNextKey() (contracts/core/TradeExecutor.sol#217)

- nonce ++ (contracts/core/TradeExecutor.sol#239)

- order.account = msg.sender (contracts/core/TradeExecutor.sol#220)

- order.underlying = params.underlying

(contracts/core/TradeExecutor.sol#221)

- order.referrer = params.referrer

(contracts/core/TradeExecutor.sol#222)

- order.validUntil = params.validUntil

(contracts/core/TradeExecutor.sol#223)

- order.premiumLimit = params.premiumLimit

(contracts/core/TradeExecutor.sol#224)

- order.executionFee = msg.value

(contracts/core/TradeExecutor.sol#225)

- order.traderVaultId = traderVaultId

(contracts/core/TradeExecutor.sol#226)

- order.callbackReceiver = params.callbackReceiver

(contracts/core/TradeExecutor.sol#227)

- order.legs.push(params.legs[i])

(contracts/core/TradeExecutor.sol#230)

Low

144

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

Reentrancy in Gmx2Hedger._gmxPositionDecrease(bool,uint256,uint256,

uint256,uint256) (contracts/core/hedgers/Gmx2Hedger.sol#857-896):

External calls:

- IExchangeRouter(exchangeRouter).sendWnt{value:

executionFee}(orderVault,executionFee)

(contracts/core/hedgers/Gmx2Hedger.sol#877-880)

- key = _createMarketOrder(createOrderParamAddresses,createOrderPar

amNumbers,Order.OrderType.MarketDecrease,Order.DecreasePositionSwap

Type.SwapPnlTokenToCollateralToken,isLong,false,0)

(contracts/core/hedgers/Gmx2Hedger.sol#882-890)

- key = IExchangeRouter(exchangeRouter).createOrder(IOrderUtils.Cre

ateOrderParams(createOrderParamAddresses,createOrderParamNumbers,or

derType,decreasePositionSwap,isLong,shouldUnwrapNativeToken,referra

lCode)) (contracts/core/hedgers/Gmx2Hedger.sol#645-655) External

calls sending eth:

- IExchangeRouter(exchangeRouter).sendWnt{value:

executionFee}(orderVault,executionFee)

(contracts/core/hedgers/Gmx2Hedger.sol#877-880) State variables

written after the call(s):

- pendingOrders[key] = true

(contracts/core/hedgers/Gmx2Hedger.sol#892)

- pendingOrdersCount = pendingOrdersCount + 1

(contracts/core/hedgers/Gmx2Hedger.sol#893)

Low

Reentrancy in HedgedPool.processOrder(ITradeExecutor.Order,address[

],uint256,int256,int256) (contracts/core/HedgedPool.sol#484-526):

External calls:

- IFeeCollector(feeCollector).collectFee(address(collateralToken),f

ee,order.referrer) (contracts/core/HedgedPool.sol#496-500) State

variables written after the call(s):

- notionalExposure[order.underlying][false] += exposureDiffCalls

(contracts/core/HedgedPool.sol#504)

- notionalExposure[order.underlying][true] += exposureDiffPuts

(contracts/core/HedgedPool.sol#505)

- processOToken(order.underlying,leg.strike,leg.expiration,oTokens[

i],underlyingPrice) (contracts/core/HedgedPool.sol#518-524)

- oTokensByExpiry[underlying][expiry].push(oToken)

(contracts/core/HedgedPool.sol#615)

Low

145

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

Reentrancy in Gmx2Hedger.afterOrderCancellation(bytes32,Order.Props

,EventUtils.EventLogData)

(contracts/core/hedgers/Gmx2Hedger.sol#218-242): External calls:

- collateralToken.safeTransfer(hedgedPool,collateralToken.balanceOf

(address(this))) (contracts/core/hedgers/Gmx2Hedger.sol#232-235)

State variables written after the call(s):

- _syncDelta() (contracts/core/hedgers/Gmx2Hedger.sol#238)

- deltaCached = (totalSizeInTokens * int256(10 ** SIREN_DECIMALS)) /

int256(10 ** underlyingDecimals)

(contracts/core/hedgers/Gmx2Hedger.sol#490-492)

Low

Reentrancy in HedgedPool.configUnderlying(address,bool,uint256,uint

256,uint256,uint256,uint256)

(contracts/core/HedgedPool.sol#707-754): External calls:

- ITradeExecutor(tradeExecutor).openMarginVault(_underlying,0,addre

ss(0)) (contracts/core/HedgedPool.sol#723-727) State variables

written after the call(s):

- allowedStrikeRanges[_underlying] =

TokenStrikeRange(_minPercent,_maxPercent,_increment)

(contracts/core/HedgedPool.sol#734-738)

- spotShockPercent[_underlying][false] = _spotShockPercentCalls

(contracts/core/HedgedPool.sol#740)

- spotShockPercent[_underlying][true] = _spotShockPercentPuts

(contracts/core/HedgedPool.sol#741)

Low

146

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

Reentrancy in

Gmx2Hedger._gmxWithdrawCollateral(bool,uint256,uint256)

(contracts/core/hedgers/Gmx2Hedger.sol#943-983): External calls:

- IExchangeRouter(exchangeRouter).sendWnt{value:

executionFee}(orderVault,executionFee)

(contracts/core/hedgers/Gmx2Hedger.sol#964-967)

- key = _createMarketOrder(createOrderParamAddresses,createOrderPar

amNumbers,Order.OrderType.MarketDecrease,Order.DecreasePositionSwap

Type.SwapPnlTokenToCollateralToken,isLong,false,0)

(contracts/core/hedgers/Gmx2Hedger.sol#969-977)

- key = IExchangeRouter(exchangeRouter).createOrder(IOrderUtils.Cre

ateOrderParams(createOrderParamAddresses,createOrderParamNumbers,or

derType,decreasePositionSwap,isLong,shouldUnwrapNativeToken,referra

lCode)) (contracts/core/hedgers/Gmx2Hedger.sol#645-655) External

calls sending eth:

- IExchangeRouter(exchangeRouter).sendWnt{value:

executionFee}(orderVault,executionFee)

(contracts/core/hedgers/Gmx2Hedger.sol#964-967) State variables

written after the call(s):

- pendingOrders[key] = true

(contracts/core/hedgers/Gmx2Hedger.sol#979)

- pendingOrdersCount = pendingOrdersCount + 1

(contracts/core/hedgers/Gmx2Hedger.sol#980)

Low

Reentrancy in FeeCollector._withdrawFee(address,address)

(contracts/core/FeeCollector.sol#89-99): External calls:

- IERC20(feeAsset).safeTransfer(msg.sender,feeAmount)

(contracts/core/FeeCollector.sol#96) Event emitted after the

call(s):

- FeeWithdrawn(referrer,feeAsset,feeAmount)

(contracts/core/FeeCollector.sol#98)

Low

147

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

Reentrancy in HedgedPool.__HedgedPool_init(address,address,address,

string,string) (contracts/core/HedgedPool.sol#104-141): External

calls:

- _refreshConfigInternal() (contracts/core/HedgedPool.sol#133)

- collateralToken.approve(marginPool,0)

(contracts/core/HedgedPool.sol#815)

- collateralToken.approve(feeCollector,0)

(contracts/core/HedgedPool.sol#818)

- collateralToken.approve(tradeExecutor,0)

(contracts/core/HedgedPool.sol#821)

- IController(controller).setOperator(tradeExecutor,false)

(contracts/core/HedgedPool.sol#822)

- IController(controller).setOperator(tradeExecutor,true)

(contracts/core/HedgedPool.sol#834)

- collateralToken.approve(marginPool,type()(uint256).max)

(contracts/core/HedgedPool.sol#837)

- collateralToken.approve(feeCollector,type()(uint256).max)

(contracts/core/HedgedPool.sol#838)

- collateralToken.approve(tradeExecutor,type()(uint256).max)

(contracts/core/HedgedPool.sol#839) Event emitted after the call(s):

- HedgedPoolInitialized(_strikeToken,_collateralToken,_tokenName,_t

okenSymbol) (contracts/core/HedgedPool.sol#135-140)

Low

Reentrancy in HedgedPool.setHedger(address,address)

(contracts/core/HedgedPool.sol#623-633): External calls:

- collateralToken.approve(address(hedgers[underlying]),0)

(contracts/core/HedgedPool.sol#626)

- collateralToken.approve(hedger,type()(uint256).max)

(contracts/core/HedgedPool.sol#630) Event emitted after the call(s):

- HedgerSet(underlying,hedger) (contracts/core/HedgedPool.sol#632)

Low

148

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

Reentrancy in Gmx2Hedger._gmxPositionDecrease(bool,uint256,uint256,

uint256,uint256) (contracts/core/hedgers/Gmx2Hedger.sol#857-896):

External calls:

- IExchangeRouter(exchangeRouter).sendWnt{value:

executionFee}(orderVault,executionFee)

(contracts/core/hedgers/Gmx2Hedger.sol#877-880)

- key = _createMarketOrder(createOrderParamAddresses,createOrderPar

amNumbers,Order.OrderType.MarketDecrease,Order.DecreasePositionSwap

Type.SwapPnlTokenToCollateralToken,isLong,false,0)

(contracts/core/hedgers/Gmx2Hedger.sol#882-890)

- key = IExchangeRouter(exchangeRouter).createOrder(IOrderUtils.Cre

ateOrderParams(createOrderParamAddresses,createOrderParamNumbers,or

derType,decreasePositionSwap,isLong,shouldUnwrapNativeToken,referra

lCode)) (contracts/core/hedgers/Gmx2Hedger.sol#645-655) External

calls sending eth:

- IExchangeRouter(exchangeRouter).sendWnt{value:

executionFee}(orderVault,executionFee)

(contracts/core/hedgers/Gmx2Hedger.sol#877-880) Event emitted after

the call(s):

- GmxDecreaseOrderCreated(key,isLong)

(contracts/core/hedgers/Gmx2Hedger.sol#895)

Low

Reentrancy in TradeExecutor.submitOrder(ITradeExecutor.SubmitOrderP

arams,address,uint256,uint256,bool)

(contracts/core/TradeExecutor.sol#168-235): External calls:

- traderVaultId = _openMarginVault(msg.sender,params.underlying)

(contracts/core/TradeExecutor.sol#189)

- controller.operate(actions)

(contracts/core/TradeExecutor.sol#699)

- IERC20(collateralAsset).safeTransferFrom(msg.sender,address(this)

,traderDeposit) (contracts/core/TradeExecutor.sol#193-197)

- IERC20(collateralAsset).safeApprove(addressBook.getMarginPool(),u

int256(traderDeposit)) (contracts/core/TradeExecutor.sol#198-201)

- controller.operate(actions)

(contracts/core/TradeExecutor.sol#215) Event emitted after the

call(s):

- OrderCreated(orderKey,order)

(contracts/core/TradeExecutor.sol#234)

Low

149

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

Reentrancy in TradeExecutor._openMarginVault(address,address)

(contracts/core/TradeExecutor.sol#678-706): External calls:

- controller.operate(actions)

(contracts/core/TradeExecutor.sol#699) Event emitted after the

call(s):

- MarginVaultOpened(_owner,_underlyingAsset,vaultId)

(contracts/core/TradeExecutor.sol#703)

Low

Reentrancy in Gmx2Hedger.afterOrderCancellation(bytes32,Order.Props

,EventUtils.EventLogData)

(contracts/core/hedgers/Gmx2Hedger.sol#218-242): External calls:

- collateralToken.safeTransfer(hedgedPool,collateralToken.balanceOf

(address(this))) (contracts/core/hedgers/Gmx2Hedger.sol#232-235)

Event emitted after the call(s):

- GmxOrderCanceled(key) (contracts/core/hedgers/Gmx2Hedger.sol#241)

Low

Reentrancy in FeeCollector.collectFee(address,uint256,address)

(contracts/core/FeeCollector.sol#50-76): External calls:

- IERC20(feeAsset).safeTransferFrom(msg.sender,address(this),feeAmo

unt) (contracts/core/FeeCollector.sol#66) Event emitted after the

call(s):

- FeeCollected(msg.sender,referrer,feeAsset,feeAmount,referrerAmoun

t) (contracts/core/FeeCollector.sol#69-75)

Low

150

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

Reentrancy in

Gmx2Hedger._gmxWithdrawCollateral(bool,uint256,uint256)

(contracts/core/hedgers/Gmx2Hedger.sol#943-983): External calls:

- IExchangeRouter(exchangeRouter).sendWnt{value:

executionFee}(orderVault,executionFee)

(contracts/core/hedgers/Gmx2Hedger.sol#964-967)

- key = _createMarketOrder(createOrderParamAddresses,createOrderPar

amNumbers,Order.OrderType.MarketDecrease,Order.DecreasePositionSwap

Type.SwapPnlTokenToCollateralToken,isLong,false,0)

(contracts/core/hedgers/Gmx2Hedger.sol#969-977)

- key = IExchangeRouter(exchangeRouter).createOrder(IOrderUtils.Cre

ateOrderParams(createOrderParamAddresses,createOrderParamNumbers,or

derType,decreasePositionSwap,isLong,shouldUnwrapNativeToken,referra

lCode)) (contracts/core/hedgers/Gmx2Hedger.sol#645-655) External

calls sending eth:

- IExchangeRouter(exchangeRouter).sendWnt{value:

executionFee}(orderVault,executionFee)

(contracts/core/hedgers/Gmx2Hedger.sol#964-967) Event emitted after

the call(s):

- GmxWithdrawlOrderCreated(key,isLong)

(contracts/core/hedgers/Gmx2Hedger.sol#982)

Low

Reentrancy in HedgedPool.settleAll()

(contracts/core/HedgedPool.sol#160-229): External calls:

- OpynLib.settle(controller,vaultId)

(contracts/core/HedgedPool.sol#185) Event emitted after the call(s):

- ExpirySettled(expiry) (contracts/core/HedgedPool.sol#219)

Low

Reentrancy in HedgedPool.configUnderlying(address,bool,uint256,uint

256,uint256,uint256,uint256)

(contracts/core/HedgedPool.sol#707-754): External calls:

- ITradeExecutor(tradeExecutor).openMarginVault(_underlying,0,addre

ss(0)) (contracts/core/HedgedPool.sol#723-727) Event emitted after

the call(s):

- UnderlyingConfigured(_underlying,_enabled,_minPercent,_maxPercent

,_increment) (contracts/core/HedgedPool.sol#747-753)

Low

151

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

TradeExecutor.validateExpirations(uint256,ITradeExecutor.OptionLeg[

]) (contracts/core/TradeExecutor.sol#146-161) uses timestamp for

comparisons Dangerous comparisons:

- validUntil <= block.timestamp

(contracts/core/TradeExecutor.sol#150)

- leg.expiration <= block.timestamp

(contracts/core/TradeExecutor.sol#156)

Low

HedgedPool._closeRound(uint256)

(contracts/core/HedgedPool.sol#259-296) uses timestamp for

comparisons Dangerous comparisons:

- lastSettledExpiry + 604800 < block.timestamp

(contracts/core/HedgedPool.sol#261)

- withdrawalRoundEnd <= block.timestamp

(contracts/core/HedgedPool.sol#268)

- depositRoundEnd <= block.timestamp

(contracts/core/HedgedPool.sol#278)

Low

HedgedPool.settleAll() (contracts/core/HedgedPool.sol#160-229) uses

timestamp for comparisons Dangerous comparisons:

- expiry <= block.timestamp (contracts/core/HedgedPool.sol#168)

Low

HedgedPool._syncVaultMargin(uint256,OpynLib.MARGIN_UPDATE_TYPE)

(contracts/core/HedgedPool.sol#669-692) uses timestamp for

comparisons Dangerous comparisons:

- lastMarginUpdate[vaultId] == block.timestamp

(contracts/core/HedgedPool.sol#674)

Low

End of table for core-v4

• As a result of the tests carried out with the Slither tool, some results

were obtained and reviewed by Halborn. Based on the results reviewed, some

vulnerabilities were determined to be false positives.

152

AU
TO

MA
TE

D
TE

ST
IN

G

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	ASSESSMENT SUMMARY
	SCOPE
	TEST APPROACH & METHODOLOGY

	RISK METHODOLOGY
	EXPLOITABILITY
	IMPACT
	SEVERITY COEFFICIENT

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS GAMMAPROTOCOL
	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	FINDINGS & TECH DETAILS CORE-v4
	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	POC
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	REVIEW NOTES
	GammaProtocol
	Controller.sol
	MarginCalculator.sol
	NakedMarginCalculator

	Core
	HedgedPool.sol
	LpManager.sol
	Gmx2Hedger.sol
	TradeExecutor
	Considerations and Risks

	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Slither results

